

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Requests 2.10.0 documentation

Requests: HTTP for Humans

Release v2.10.0. (Installation)

Requests is the only Non-GMO HTTP library for Python, safe for human
consumption.

Warning: Recreational use of other HTTP libraries may result in dangerous side-effects,
including: security vulnerabilities, verbose code, reinventing the wheel,
constantly reading documentation, depression, headaches, or even death.

Behold, the power of Requests:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}

See similar code, sans Requests [https://gist.github.com/973705].

Requests allows you to send organic, grass-fed HTTP/1.1 requests, without the
need for manual labor. There's no need to manually add query strings to your
URLs, or to form-encode your POST data. Keep-alive and HTTP connection pooling
are 100% automatic, powered by urllib3 [https://github.com/shazow/urllib3],
which is embedded within Requests.

User Testimonials

Her Majesty's Government, Amazon, Google, Twilio, Runscope, Mozilla, Heroku,
PayPal, NPR, Obama for America, Transifex, Native Instruments, The Washington
Post, Twitter, SoundCloud, Kippt, Readability, Sony, and Federal U.S.
Institutions that prefer to be unnamed claim to use Requests internally.

	Armin Ronacher

	Requests is the perfect example how beautiful an API can be with the
right level of abstraction.

	Matt DeBoard

	I'm going to get @kennethreitz's Python requests module tattooed
on my body, somehow. The whole thing.

	Daniel Greenfeld

	Nuked a 1200 LOC spaghetti code library with 10 lines of code thanks to
@kennethreitz's request library. Today has been AWESOME.

	Kenny Meyers

	Python HTTP: When in doubt, or when not in doubt, use Requests. Beautiful,
simple, Pythonic.

Requests is one of the most downloaded Python packages of all time, pulling in
over 7,000,000 downloads every month. All the cool kids are doing it!

Supported Features

Requests is ready for today's web.

	International Domains and URLs

	Keep-Alive & Connection Pooling

	Sessions with Cookie Persistence

	Browser-style SSL Verification

	Basic/Digest Authentication

	Elegant Key/Value Cookies

	Automatic Decompression

	Automatic Content Decoding

	Unicode Response Bodies

	Multipart File Uploads

	HTTP(S) Proxy Support

	Connection Timeouts

	Streaming Downloads

	.netrc Support

	Chunked Requests

	Thread-safety

Requests supports Python 2.6 — 3.5, and runs great on PyPy.

The User Guide

This part of the documentation, which is mostly prose, begins with some
background information about Requests, then focuses on step-by-step
instructions for getting the most out of Requests.

	Introduction
	Philosophy

	Apache2 License

	Requests License

	Installation
	Pip Install Requests

	Get the Source Code

	Quickstart
	Make a Request

	Passing Parameters In URLs

	Response Content

	Binary Response Content

	JSON Response Content

	Raw Response Content

	Custom Headers

	More complicated POST requests

	POST a Multipart-Encoded File

	Response Status Codes

	Response Headers

	Cookies

	Redirection and History

	Timeouts

	Errors and Exceptions

	Advanced Usage
	Session Objects

	Request and Response Objects

	Prepared Requests

	SSL Cert Verification

	CA Certificates

	Body Content Workflow

	Keep-Alive

	Streaming Uploads

	Chunk-Encoded Requests

	POST Multiple Multipart-Encoded Files

	Event Hooks

	Custom Authentication

	Streaming Requests

	Proxies

	Compliance

	HTTP Verbs

	Link Headers

	Transport Adapters

	Blocking Or Non-Blocking?

	Header Ordering

	Timeouts

	Authentication
	Basic Authentication

	Digest Authentication

	OAuth 1 Authentication

	Other Authentication

	New Forms of Authentication

The Community Guide

This part of the documentation, which is mostly prose, details the
Requests ecosystem and community.

	Frequently Asked Questions

	Recommended Packages and Extensions

	Integrations

	Articles & Talks

	Support

	Vulnerability Disclosure

	Community Updates

	Release and Version History

	Release Process and Rules

The API Documentation / Guide

If you are looking for information on a specific function, class, or method,
this part of the documentation is for you.

	Developer Interface
	Main Interface

	Exceptions

	Request Sessions

	Lower-Level Classes

	Lower-Lower-Level Classes

	Authentication

	Encodings

	Cookies

	Status Code Lookup

	Migrating to 1.x

	Migrating to 2.x

The Contributor Guide

If you want to contribute to the project, this part of the documentation is for
you.

	Contributor's Guide
	Be Cordial

	Get Early Feedback

	Contribution Suitability

	Code Contributions
	Steps for Submitting Code

	Code Review

	New Contributors

	Kenneth Reitz's Code Style™

	Documentation Contributions

	Bug Reports

	Feature Requests

	Development Philosophy
	Management Style

	Values

	Semantic Versioning

	Standard Library?

	Linux Distro Packages

	How to Help
	Feature Freeze

	Development Dependencies

	Runtime Environments

	Are you crazy?

	Downstream Repackaging

	Authors
	Keepers of the Three Crystals

	Urllib3

	Patches and Suggestions

There are no more guides. You are now guideless.
Good luck.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Introduction

Philosophy

Requests was developed with a few PEP 20 [https://www.python.org/dev/peps/pep-0020] idioms in mind.

	Beautiful is better than ugly.

	Explicit is better than implicit.

	Simple is better than complex.

	Complex is better than complicated.

	Readability counts.

All contributions to Requests should keep these important rules in mind.

Apache2 License

A large number of open source projects you find today are GPL Licensed [http://www.opensource.org/licenses/gpl-license.php].
While the GPL has its time and place, it should most certainly not be your
go-to license for your next open source project.

A project that is released as GPL cannot be used in any commercial product
without the product itself also being offered as open source.

The MIT, BSD, ISC, and Apache2 licenses are great alternatives to the GPL
that allow your open-source software to be used freely in proprietary,
closed-source software.

Requests is released under terms of Apache2 License [http://opensource.org/licenses/Apache-2.0].

Requests License

Copyright 2016 Kenneth Reitz

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Installation

This part of the documentation covers the installation of Requests.
The first step to using any software package is getting it properly installed.

Pip Install Requests

To install Requests, simply run this simple command in your terminal of choice:

$ pip install requests

If you don't have pip [https://pip.pypa.io] installed (tisk tisk!),
this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/]
can guide you through the process.

Get the Source Code

Requests is actively developed on GitHub, where the code is
always available [https://github.com/kennethreitz/requests].

You can either clone the public repository:

$ git clone git://github.com/kennethreitz/requests.git

Or, download the tarball [https://github.com/kennethreitz/requests/tarball/master]:

$ curl -OL https://github.com/kennethreitz/requests/tarball/master
 # optionally, zipball is also available (for Windows users).

Once you have a copy of the source, you can embed it in your own Python
package, or install it into your site-packages easily:

$ python setup.py install

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Quickstart

Eager to get started? This page gives a good introduction in how to get started
with Requests.

First, make sure that:

	Requests is installed

	Requests is up-to-date

Let's get started with some simple examples.

Make a Request

Making a request with Requests is very simple.

Begin by importing the Requests module:

>>> import requests

Now, let's try to get a webpage. For this example, let's get GitHub's public
timeline

>>> r = requests.get('https://api.github.com/events')

Now, we have a Response object called r. We can
get all the information we need from this object.

Requests' simple API means that all forms of HTTP request are as obvious. For
example, this is how you make an HTTP POST request:

>>> r = requests.post('http://httpbin.org/post', data = {'key':'value'})

Nice, right? What about the other HTTP request types: PUT, DELETE, HEAD and
OPTIONS? These are all just as simple:

>>> r = requests.put('http://httpbin.org/put', data = {'key':'value'})
>>> r = requests.delete('http://httpbin.org/delete')
>>> r = requests.head('http://httpbin.org/get')
>>> r = requests.options('http://httpbin.org/get')

That's all well and good, but it's also only the start of what Requests can
do.

Passing Parameters In URLs

You often want to send some sort of data in the URL's query string. If
you were constructing the URL by hand, this data would be given as key/value
pairs in the URL after a question mark, e.g. httpbin.org/get?key=val.
Requests allows you to provide these arguments as a dictionary, using the
params keyword argument. As an example, if you wanted to pass
key1=value1 and key2=value2 to httpbin.org/get, you would use the
following code:

>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.get('http://httpbin.org/get', params=payload)

You can see that the URL has been correctly encoded by printing the URL:

>>> print(r.url)
http://httpbin.org/get?key2=value2&key1=value1

Note that any dictionary key whose value is None will not be added to the
URL's query string.

You can also pass a list of items as a value:

>>> payload = {'key1': 'value1', 'key2': ['value2', 'value3']}

>>> r = requests.get('http://httpbin.org/get', params=payload)
>>> print(r.url)
http://httpbin.org/get?key1=value1&key2=value2&key2=value3

Response Content

We can read the content of the server's response. Consider the GitHub timeline
again:

>>> import requests

>>> r = requests.get('https://api.github.com/events')
>>> r.text
u'[{"repository":{"open_issues":0,"url":"https://github.com/...

Requests will automatically decode content from the server. Most unicode
charsets are seamlessly decoded.

When you make a request, Requests makes educated guesses about the encoding of
the response based on the HTTP headers. The text encoding guessed by Requests
is used when you access r.text. You can find out what encoding Requests is
using, and change it, using the r.encoding property:

>>> r.encoding
'utf-8'
>>> r.encoding = 'ISO-8859-1'

If you change the encoding, Requests will use the new value of r.encoding
whenever you call r.text. You might want to do this in any situation where
you can apply special logic to work out what the encoding of the content will
be. For example, HTTP and XML have the ability to specify their encoding in
their body. In situations like this, you should use r.content to find the
encoding, and then set r.encoding. This will let you use r.text with
the correct encoding.

Requests will also use custom encodings in the event that you need them. If
you have created your own encoding and registered it with the codecs
module, you can simply use the codec name as the value of r.encoding and
Requests will handle the decoding for you.

Binary Response Content

You can also access the response body as bytes, for non-text requests:

>>> r.content
b'[{"repository":{"open_issues":0,"url":"https://github.com/...

The gzip and deflate transfer-encodings are automatically decoded for you.

For example, to create an image from binary data returned by a request, you can
use the following code:

>>> from PIL import Image
>>> from StringIO import StringIO

>>> i = Image.open(StringIO(r.content))

JSON Response Content

There's also a builtin JSON decoder, in case you're dealing with JSON data:

>>> import requests

>>> r = requests.get('https://api.github.com/events')
>>> r.json()
[{u'repository': {u'open_issues': 0, u'url': 'https://github.com/...

In case the JSON decoding fails, r.json raises an exception. For example, if
the response gets a 204 (No Content), or if the response contains invalid JSON,
attempting r.json raises ValueError: No JSON object could be decoded.

It should be noted that the success of the call to r.json does not
indicate the success of the response. Some servers may return a JSON object in a
failed response (e.g. error details with HTTP 500). Such JSON will be decoded
and returned. To check that a request is successful, use
r.raise_for_status() or check r.status_code is what you expect.

Raw Response Content

In the rare case that you'd like to get the raw socket response from the
server, you can access r.raw. If you want to do this, make sure you set
stream=True in your initial request. Once you do, you can do this:

>>> r = requests.get('https://api.github.com/events', stream=True)

>>> r.raw
<requests.packages.urllib3.response.HTTPResponse object at 0x101194810>

>>> r.raw.read(10)
'\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03'

In general, however, you should use a pattern like this to save what is being
streamed to a file:

with open(filename, 'wb') as fd:
 for chunk in r.iter_content(chunk_size):
 fd.write(chunk)

Using Response.iter_content will handle a lot of what you would otherwise
have to handle when using Response.raw directly. When streaming a
download, the above is the preferred and recommended way to retrieve the
content.

Custom Headers

If you'd like to add HTTP headers to a request, simply pass in a dict to the
headers parameter.

For example, we didn't specify our user-agent in the previous example:

>>> url = 'https://api.github.com/some/endpoint'
>>> headers = {'user-agent': 'my-app/0.0.1'}

>>> r = requests.get(url, headers=headers)

Note: Custom headers are given less precedence than more specific sources of information. For instance:

	Authorization headers set with headers= will be overridden if credentials
are specified in .netrc, which in turn will be overridden by the auth=
parameter.

	Authorization headers will be removed if you get redirected off-host.

	Proxy-Authorization headers will be overridden by proxy credentials provided in the URL.

	Content-Length headers will be overridden when we can determine the length of the content.

Furthermore, Requests does not change its behavior at all based on which custom headers are specified. The headers are simply passed on into the final request.

More complicated POST requests

Typically, you want to send some form-encoded data — much like an HTML form.
To do this, simply pass a dictionary to the data argument. Your
dictionary of data will automatically be form-encoded when the request is made:

>>> payload = {'key1': 'value1', 'key2': 'value2'}

>>> r = requests.post("http://httpbin.org/post", data=payload)
>>> print(r.text)
{
 ...
 "form": {
 "key2": "value2",
 "key1": "value1"
 },
 ...
}

There are many times that you want to send data that is not form-encoded. If
you pass in a string instead of a dict, that data will be posted directly.

For example, the GitHub API v3 accepts JSON-Encoded POST/PATCH data:

>>> import json

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}

>>> r = requests.post(url, data=json.dumps(payload))

Instead of encoding the dict yourself, you can also pass it directly using
the json parameter (added in version 2.4.2) and it will be encoded automatically:

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}

>>> r = requests.post(url, json=payload)

POST a Multipart-Encoded File

Requests makes it simple to upload Multipart-encoded files:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': open('report.xls', 'rb')}

>>> r = requests.post(url, files=files)
>>> r.text
{
 ...
 "files": {
 "file": "<censored...binary...data>"
 },
 ...
}

You can set the filename, content_type and headers explicitly:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel', {'Expires': '0'})}

>>> r = requests.post(url, files=files)
>>> r.text
{
 ...
 "files": {
 "file": "<censored...binary...data>"
 },
 ...
}

If you want, you can send strings to be received as files:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.csv', 'some,data,to,send\nanother,row,to,send\n')}

>>> r = requests.post(url, files=files)
>>> r.text
{
 ...
 "files": {
 "file": "some,data,to,send\\nanother,row,to,send\\n"
 },
 ...
}

In the event you are posting a very large file as a multipart/form-data
request, you may want to stream the request. By default, requests does not
support this, but there is a separate package which does -
requests-toolbelt. You should read the toolbelt's documentation [https://toolbelt.readthedocs.io] for more details about how to use it.

For sending multiple files in one request refer to the advanced
section.

Warning

It is strongly recommended that you open files in binary mode [https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files].
This is because Requests may attempt to provide the
Content-Length header for you, and if it does this value will
be set to the number of bytes in the file. Errors may occur if
you open the file in text mode.

Response Status Codes

We can check the response status code:

>>> r = requests.get('http://httpbin.org/get')
>>> r.status_code
200

Requests also comes with a built-in status code lookup object for easy
reference:

>>> r.status_code == requests.codes.ok
True

If we made a bad request (a 4XX client error or 5XX server error response), we
can raise it with
Response.raise_for_status():

>>> bad_r = requests.get('http://httpbin.org/status/404')
>>> bad_r.status_code
404

>>> bad_r.raise_for_status()
Traceback (most recent call last):
 File "requests/models.py", line 832, in raise_for_status
 raise http_error
requests.exceptions.HTTPError: 404 Client Error

But, since our status_code for r was 200, when we call
raise_for_status() we get:

>>> r.raise_for_status()
None

All is well.

Response Headers

We can view the server's response headers using a Python dictionary:

>>> r.headers
{
 'content-encoding': 'gzip',
 'transfer-encoding': 'chunked',
 'connection': 'close',
 'server': 'nginx/1.0.4',
 'x-runtime': '148ms',
 'etag': '"e1ca502697e5c9317743dc078f67693f"',
 'content-type': 'application/json'
}

The dictionary is special, though: it's made just for HTTP headers. According to
RFC 7230 [http://tools.ietf.org/html/rfc7230#section-3.2], HTTP Header names
are case-insensitive.

So, we can access the headers using any capitalization we want:

>>> r.headers['Content-Type']
'application/json'

>>> r.headers.get('content-type')
'application/json'

It is also special in that the server could have sent the same header multiple
times with different values, but requests combines them so they can be
represented in the dictionary within a single mapping, as per
RFC 7230 [http://tools.ietf.org/html/rfc7230#section-3.2]:

A recipient MAY combine multiple header fields with the same field name
into one "field-name: field-value" pair, without changing the semantics
of the message, by appending each subsequent field value to the combined
field value in order, separated by a comma.

Cookies

If a response contains some Cookies, you can quickly access them:

>>> url = 'http://example.com/some/cookie/setting/url'
>>> r = requests.get(url)

>>> r.cookies['example_cookie_name']
'example_cookie_value'

To send your own cookies to the server, you can use the cookies
parameter:

>>> url = 'http://httpbin.org/cookies'
>>> cookies = dict(cookies_are='working')

>>> r = requests.get(url, cookies=cookies)
>>> r.text
'{"cookies": {"cookies_are": "working"}}'

Redirection and History

By default Requests will perform location redirection for all verbs except
HEAD.

We can use the history property of the Response object to track redirection.

The Response.history list contains the
Response objects that were created in order to
complete the request. The list is sorted from the oldest to the most recent
response.

For example, GitHub redirects all HTTP requests to HTTPS:

>>> r = requests.get('http://github.com')

>>> r.url
'https://github.com/'

>>> r.status_code
200

>>> r.history
[<Response [301]>]

If you're using GET, OPTIONS, POST, PUT, PATCH or DELETE, you can disable
redirection handling with the allow_redirects parameter:

>>> r = requests.get('http://github.com', allow_redirects=False)

>>> r.status_code
301

>>> r.history
[]

If you're using HEAD, you can enable redirection as well:

>>> r = requests.head('http://github.com', allow_redirects=True)

>>> r.url
'https://github.com/'

>>> r.history
[<Response [301]>]

Timeouts

You can tell Requests to stop waiting for a response after a given number of
seconds with the timeout parameter:

>>> requests.get('http://github.com', timeout=0.001)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
requests.exceptions.Timeout: HTTPConnectionPool(host='github.com', port=80): Request timed out. (timeout=0.001)

Note

timeout is not a time limit on the entire response download;
rather, an exception is raised if the server has not issued a
response for timeout seconds (more precisely, if no bytes have been
received on the underlying socket for timeout seconds).

Errors and Exceptions

In the event of a network problem (e.g. DNS failure, refused connection, etc),
Requests will raise a ConnectionError exception.

Response.raise_for_status() will
raise an HTTPError if the HTTP request
returned an unsuccessful status code.

If a request times out, a Timeout exception is
raised.

If a request exceeds the configured number of maximum redirections, a
TooManyRedirects exception is raised.

All exceptions that Requests explicitly raises inherit from
requests.exceptions.RequestException.

Ready for more? Check out the advanced section.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Advanced Usage

This document covers some of Requests more advanced features.

Session Objects

The Session object allows you to persist certain parameters across
requests. It also persists cookies across all requests made from the
Session instance, and will use urllib3's connection pooling [https://urllib3.readthedocs.io/en/latest/pools.html]. So if
you're making several requests to the same host, the underlying TCP
connection will be reused, which can result in a significant performance
increase (see HTTP persistent connection [https://en.wikipedia.org/wiki/HTTP_persistent_connection]).

A Session object has all the methods of the main Requests API.

Let's persist some cookies across requests:

s = requests.Session()

s.get('http://httpbin.org/cookies/set/sessioncookie/123456789')
r = s.get('http://httpbin.org/cookies')

print(r.text)
'{"cookies": {"sessioncookie": "123456789"}}'

Sessions can also be used to provide default data to the request methods. This
is done by providing data to the properties on a Session object:

s = requests.Session()
s.auth = ('user', 'pass')
s.headers.update({'x-test': 'true'})

both 'x-test' and 'x-test2' are sent
s.get('http://httpbin.org/headers', headers={'x-test2': 'true'})

Any dictionaries that you pass to a request method will be merged with the
session-level values that are set. The method-level parameters override session
parameters.

Note, however, that method-level parameters will not be persisted across
requests, even if using a session. This example will only send the cookies
with the first request, but not the second:

s = requests.Session()

r = s.get('http://httpbin.org/cookies', cookies={'from-my': 'browser'})
print(r.text)
'{"cookies": {"from-my": "browser"}}'

r = s.get('http://httpbin.org/cookies')
print(r.text)
'{"cookies": {}}'

If you want to manually add cookies to your session, use the
Cookie utility functions to manipulate
Session.cookies.

Sessions can also be used as context managers:

with requests.Session() as s:
 s.get('http://httpbin.org/cookies/set/sessioncookie/123456789')

This will make sure the session is closed as soon as the with block is
exited, even if unhandled exceptions occurred.

Remove a Value From a Dict Parameter

Sometimes you'll want to omit session-level keys from a dict parameter. To
do this, you simply set that key's value to None in the method-level
parameter. It will automatically be omitted.

All values that are contained within a session are directly available to you.
See the Session API Docs to learn more.

Request and Response Objects

Whenever a call is made to requests.get() and friends you are doing two
major things. First, you are constructing a Request object which will be
sent off to a server to request or query some resource. Second, a Response
object is generated once requests gets a response back from the server.
The Response object contains all of the information returned by the server and
also contains the Request object you created originally. Here is a simple
request to get some very important information from Wikipedia's servers:

>>> r = requests.get('http://en.wikipedia.org/wiki/Monty_Python')

If we want to access the headers the server sent back to us, we do this:

>>> r.headers
{'content-length': '56170', 'x-content-type-options': 'nosniff', 'x-cache':
'HIT from cp1006.eqiad.wmnet, MISS from cp1010.eqiad.wmnet', 'content-encoding':
'gzip', 'age': '3080', 'content-language': 'en', 'vary': 'Accept-Encoding,Cookie',
'server': 'Apache', 'last-modified': 'Wed, 13 Jun 2012 01:33:50 GMT',
'connection': 'close', 'cache-control': 'private, s-maxage=0, max-age=0,
must-revalidate', 'date': 'Thu, 14 Jun 2012 12:59:39 GMT', 'content-type':
'text/html; charset=UTF-8', 'x-cache-lookup': 'HIT from cp1006.eqiad.wmnet:3128,
MISS from cp1010.eqiad.wmnet:80'}

However, if we want to get the headers we sent the server, we simply access the
request, and then the request's headers:

>>> r.request.headers
{'Accept-Encoding': 'identity, deflate, compress, gzip',
'Accept': '*/*', 'User-Agent': 'python-requests/1.2.0'}

Prepared Requests

Whenever you receive a Response object
from an API call or a Session call, the request attribute is actually the
PreparedRequest that was used. In some cases you may wish to do some extra
work to the body or headers (or anything else really) before sending a
request. The simple recipe for this is the following:

from requests import Request, Session

s = Session()

req = Request('POST', url, data=data, headers=headers)
prepped = req.prepare()

do something with prepped.body
prepped.body = 'No, I want exactly this as the body.'

do something with prepped.headers
del prepped.headers['Content-Type']

resp = s.send(prepped,
 stream=stream,
 verify=verify,
 proxies=proxies,
 cert=cert,
 timeout=timeout
)

print(resp.status_code)

Since you are not doing anything special with the Request object, you
prepare it immediately and modify the PreparedRequest object. You then
send that with the other parameters you would have sent to requests.* or
Session.*.

However, the above code will lose some of the advantages of having a Requests
Session object. In particular,
Session-level state such as cookies will
not get applied to your request. To get a
PreparedRequest with that state
applied, replace the call to Request.prepare() with a call to
Session.prepare_request(), like this:

from requests import Request, Session

s = Session()
req = Request('GET', url, data=data, headers=headers)

prepped = s.prepare_request(req)

do something with prepped.body
prepped.body = 'Seriously, send exactly these bytes.'

do something with prepped.headers
prepped.headers['Keep-Dead'] = 'parrot'

resp = s.send(prepped,
 stream=stream,
 verify=verify,
 proxies=proxies,
 cert=cert,
 timeout=timeout
)

print(resp.status_code)

SSL Cert Verification

Requests verifies SSL certificates for HTTPS requests, just like a web browser.
By default, SSL verification is enabled, and Requests will throw a SSLError if
it's unable to verify the certificate:

>>> requests.get('https://requestb.in')
requests.exceptions.SSLError: hostname 'requestb.in' doesn't match either of '*.herokuapp.com', 'herokuapp.com'

I don't have SSL setup on this domain, so it throws an exception. Excellent. GitHub does though:

>>> requests.get('https://github.com')
<Response [200]>

You can pass verify the path to a CA_BUNDLE file or directory with certificates of trusted CAs:

>>> requests.get('https://github.com', verify='/path/to/certfile')

Note

If verify is set to a path to a directory, the directory must have been processed using
the c_rehash utility supplied with OpenSSL.

This list of trusted CAs can also be specified through the REQUESTS_CA_BUNDLE environment variable.

Requests can also ignore verifying the SSL certificate if you set verify to False.

>>> requests.get('https://kennethreitz.com', verify=False)
<Response [200]>

By default, verify is set to True. Option verify only applies to host certs.

You can also specify a local cert to use as client side certificate, as a single
file (containing the private key and the certificate) or as a tuple of both
file's path:

>>> requests.get('https://kennethreitz.com', cert=('/path/client.cert', '/path/client.key'))
<Response [200]>

If you specify a wrong path or an invalid cert, you'll get a SSLError:

>>> requests.get('https://kennethreitz.com', cert='/wrong_path/client.pem')
SSLError: [Errno 336265225] _ssl.c:347: error:140B0009:SSL routines:SSL_CTX_use_PrivateKey_file:PEM lib

Warning

The private key to your local certificate must be unencrypted.
Currently, Requests does not support using encrypted keys.

CA Certificates

By default Requests bundles a set of root CAs that it trusts, sourced from the
Mozilla trust store [https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt]. However, these are only updated once for each Requests
version. This means that if you pin a Requests version your certificates can
become extremely out of date.

From Requests version 2.4.0 onwards, Requests will attempt to use certificates
from certifi [http://certifi.io/] if it is present on the system. This allows for users to update
their trusted certificates without having to change the code that runs on their
system.

For the sake of security we recommend upgrading certifi frequently!

Body Content Workflow

By default, when you make a request, the body of the response is downloaded
immediately. You can override this behaviour and defer downloading the response
body until you access the Response.content
attribute with the stream parameter:

tarball_url = 'https://github.com/kennethreitz/requests/tarball/master'
r = requests.get(tarball_url, stream=True)

At this point only the response headers have been downloaded and the connection
remains open, hence allowing us to make content retrieval conditional:

if int(r.headers['content-length']) < TOO_LONG:
 content = r.content
 ...

You can further control the workflow by use of the Response.iter_content
and Response.iter_lines methods.
Alternatively, you can read the undecoded body from the underlying
urllib3 urllib3.HTTPResponse [http://urllib3.readthedocs.io/en/latest/helpers.html#urllib3.response.HTTPResponse] at
Response.raw.

If you set stream to True when making a request, Requests cannot
release the connection back to the pool unless you consume all the data or call
Response.close. This can lead to
inefficiency with connections. If you find yourself partially reading request
bodies (or not reading them at all) while using stream=True, you should
consider using contextlib.closing (documented here [http://docs.python.org/2/library/contextlib.html#contextlib.closing]), like this:

from contextlib import closing

with closing(requests.get('http://httpbin.org/get', stream=True)) as r:
 # Do things with the response here.

Keep-Alive

Excellent news —thanks to urllib3, keep-alive is 100% automatic within a session!
Any requests that you make within a session will automatically reuse the appropriate
connection!

Note that connections are only released back to the pool for reuse once all body
data has been read; be sure to either set stream to False or read the
content property of the Response object.

Streaming Uploads

Requests supports streaming uploads, which allow you to send large streams or
files without reading them into memory. To stream and upload, simply provide a
file-like object for your body:

with open('massive-body', 'rb') as f:
 requests.post('http://some.url/streamed', data=f)

Warning

It is strongly recommended that you open files in binary mode [https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files].
This is because Requests may attempt to provide the
Content-Length header for you, and if it does this value will
be set to the number of bytes in the file. Errors may occur if
you open the file in text mode.

Chunk-Encoded Requests

Requests also supports Chunked transfer encoding for outgoing and incoming requests.
To send a chunk-encoded request, simply provide a generator (or any iterator without
a length) for your body:

def gen():
 yield 'hi'
 yield 'there'

requests.post('http://some.url/chunked', data=gen())

For chunked encoded responses, it's best to iterate over the data using
Response.iter_content(). In
an ideal situation you'll have set stream=True on the request, in which
case you can iterate chunk-by-chunk by calling iter_content with a chunk
size parameter of None. If you want to set a maximum size of the chunk,
you can set a chunk size parameter to any integer.

POST Multiple Multipart-Encoded Files

You can send multiple files in one request. For example, suppose you want to
upload image files to an HTML form with a multiple file field 'images':

<input type="file" name="images" multiple="true" required="true"/>

To do that, just set files to a list of tuples of (form_field_name, file_info):

>>> url = 'http://httpbin.org/post'
>>> multiple_files = [
 ('images', ('foo.png', open('foo.png', 'rb'), 'image/png')),
 ('images', ('bar.png', open('bar.png', 'rb'), 'image/png'))]
>>> r = requests.post(url, files=multiple_files)
>>> r.text
{
 ...
 'files': {'images': ''}
 'Content-Type': 'multipart/form-data; boundary=3131623adb2043caaeb5538cc7aa0b3a',
 ...
}

Warning

It is strongly recommended that you open files in binary mode [https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files].
This is because Requests may attempt to provide the
Content-Length header for you, and if it does this value will
be set to the number of bytes in the file. Errors may occur if
you open the file in text mode.

Event Hooks

Requests has a hook system that you can use to manipulate portions of
the request process, or signal event handling.

Available hooks:

	response:

	The response generated from a Request.

You can assign a hook function on a per-request basis by passing a
{hook_name: callback_function} dictionary to the hooks request
parameter:

hooks=dict(response=print_url)

That callback_function will receive a chunk of data as its first
argument.

def print_url(r, *args, **kwargs):
 print(r.url)

If an error occurs while executing your callback, a warning is given.

If the callback function returns a value, it is assumed that it is to
replace the data that was passed in. If the function doesn't return
anything, nothing else is effected.

Let's print some request method arguments at runtime:

>>> requests.get('http://httpbin.org', hooks=dict(response=print_url))
http://httpbin.org
<Response [200]>

Custom Authentication

Requests allows you to use specify your own authentication mechanism.

Any callable which is passed as the auth argument to a request method will
have the opportunity to modify the request before it is dispatched.

Authentication implementations are subclasses of requests.auth.AuthBase,
and are easy to define. Requests provides two common authentication scheme
implementations in requests.auth: HTTPBasicAuth and HTTPDigestAuth.

Let's pretend that we have a web service that will only respond if the
X-Pizza header is set to a password value. Unlikely, but just go with it.

from requests.auth import AuthBase

class PizzaAuth(AuthBase):
 """Attaches HTTP Pizza Authentication to the given Request object."""
 def __init__(self, username):
 # setup any auth-related data here
 self.username = username

 def __call__(self, r):
 # modify and return the request
 r.headers['X-Pizza'] = self.username
 return r

Then, we can make a request using our Pizza Auth:

>>> requests.get('http://pizzabin.org/admin', auth=PizzaAuth('kenneth'))
<Response [200]>

Streaming Requests

With requests.Response.iter_lines() you can easily
iterate over streaming APIs such as the Twitter Streaming
API [https://dev.twitter.com/streaming/overview]. Simply
set stream to True and iterate over the response with
iter_lines():

import json
import requests

r = requests.get('http://httpbin.org/stream/20', stream=True)

for line in r.iter_lines():

 # filter out keep-alive new lines
 if line:
 print(json.loads(line))

Warning

iter_lines() is not reentrant safe.
Calling this method multiple times causes some of the received data
being lost. In case you need to call it from multiple places, use
the resulting iterator object instead:

lines = r.iter_lines()
Save the first line for later or just skip it

first_line = next(lines)

for line in lines:
 print(line)

Proxies

If you need to use a proxy, you can configure individual requests with the
proxies argument to any request method:

import requests

proxies = {
 'http': 'http://10.10.1.10:3128',
 'https': 'http://10.10.1.10:1080',
}

requests.get('http://example.org', proxies=proxies)

You can also configure proxies by setting the environment variables
HTTP_PROXY and HTTPS_PROXY.

$ export HTTP_PROXY="http://10.10.1.10:3128"
$ export HTTPS_PROXY="http://10.10.1.10:1080"

$ python
>>> import requests
>>> requests.get('http://example.org')

To use HTTP Basic Auth with your proxy, use the http://user:password@host/ syntax:

proxies = {'http': 'http://user:pass@10.10.1.10:3128/'}

To give a proxy for a specific scheme and host, use the
scheme://hostname form for the key. This will match for
any request to the given scheme and exact hostname.

proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'}

Note that proxy URLs must include the scheme.

SOCKS

New in version 2.10.0.

In addition to basic HTTP proxies, Requests also supports proxies using the
SOCKS protocol. This is an optional feature that requires that additional
third-party libraries be installed before use.

You can get the dependencies for this feature from pip:

$ pip install requests[socks]

Once you've installed those dependencies, using a SOCKS proxy is just as easy
as using a HTTP one:

proxies = {
 'http': 'socks5://user:pass@host:port',
 'https': 'socks5://user:pass@host:port'
}

Compliance

Requests is intended to be compliant with all relevant specifications and
RFCs where that compliance will not cause difficulties for users. This
attention to the specification can lead to some behaviour that may seem
unusual to those not familiar with the relevant specification.

Encodings

When you receive a response, Requests makes a guess at the encoding to
use for decoding the response when you access the Response.text attribute. Requests will first check for an
encoding in the HTTP header, and if none is present, will use chardet [http://pypi.python.org/pypi/chardet] to attempt to guess the encoding.

The only time Requests will not do this is if no explicit charset
is present in the HTTP headers and the Content-Type
header contains text. In this situation, RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7.1] specifies
that the default charset must be ISO-8859-1. Requests follows the
specification in this case. If you require a different encoding, you can
manually set the Response.encoding
property, or use the raw Response.content.

HTTP Verbs

Requests provides access to almost the full range of HTTP verbs: GET, OPTIONS,
HEAD, POST, PUT, PATCH and DELETE. The following provides detailed examples of
using these various verbs in Requests, using the GitHub API.

We will begin with the verb most commonly used: GET. HTTP GET is an idempotent
method that returns a resource from a given URL. As a result, it is the verb
you ought to use when attempting to retrieve data from a web location. An
example usage would be attempting to get information about a specific commit
from GitHub. Suppose we wanted commit a050faf on Requests. We would get it
like so:

>>> import requests
>>> r = requests.get('https://api.github.com/repos/kennethreitz/requests/git/commits/a050faf084662f3a352dd1a941f2c7c9f886d4ad')

We should confirm that GitHub responded correctly. If it has, we want to work
out what type of content it is. Do this like so:

>>> if r.status_code == requests.codes.ok:
... print(r.headers['content-type'])
...
application/json; charset=utf-8

So, GitHub returns JSON. That's great, we can use the r.json method to parse it into Python objects.

>>> commit_data = r.json()

>>> print(commit_data.keys())
[u'committer', u'author', u'url', u'tree', u'sha', u'parents', u'message']

>>> print(commit_data[u'committer'])
{u'date': u'2012-05-10T11:10:50-07:00', u'email': u'me@kennethreitz.com', u'name': u'Kenneth Reitz'}

>>> print(commit_data[u'message'])
makin' history

So far, so simple. Well, let's investigate the GitHub API a little bit. Now,
we could look at the documentation, but we might have a little more fun if we
use Requests instead. We can take advantage of the Requests OPTIONS verb to
see what kinds of HTTP methods are supported on the url we just used.

>>> verbs = requests.options(r.url)
>>> verbs.status_code
500

Uh, what? That's unhelpful! Turns out GitHub, like many API providers, don't
actually implement the OPTIONS method. This is an annoying oversight, but it's
OK, we can just use the boring documentation. If GitHub had correctly
implemented OPTIONS, however, they should return the allowed methods in the
headers, e.g.

>>> verbs = requests.options('http://a-good-website.com/api/cats')
>>> print(verbs.headers['allow'])
GET,HEAD,POST,OPTIONS

Turning to the documentation, we see that the only other method allowed for
commits is POST, which creates a new commit. As we're using the Requests repo,
we should probably avoid making ham-handed POSTS to it. Instead, let's play
with the Issues feature of GitHub.

This documentation was added in response to Issue #482. Given that this issue
already exists, we will use it as an example. Let's start by getting it.

>>> r = requests.get('https://api.github.com/repos/kennethreitz/requests/issues/482')
>>> r.status_code
200

>>> issue = json.loads(r.text)

>>> print(issue[u'title'])
Feature any http verb in docs

>>> print(issue[u'comments'])
3

Cool, we have three comments. Let's take a look at the last of them.

>>> r = requests.get(r.url + u'/comments')
>>> r.status_code
200

>>> comments = r.json()

>>> print(comments[0].keys())
[u'body', u'url', u'created_at', u'updated_at', u'user', u'id']

>>> print(comments[2][u'body'])
Probably in the "advanced" section

Well, that seems like a silly place. Let's post a comment telling the poster
that he's silly. Who is the poster, anyway?

>>> print(comments[2][u'user'][u'login'])
kennethreitz

OK, so let's tell this Kenneth guy that we think this example should go in the
quickstart guide instead. According to the GitHub API doc, the way to do this
is to POST to the thread. Let's do it.

>>> body = json.dumps({u"body": u"Sounds great! I'll get right on it!"})
>>> url = u"https://api.github.com/repos/kennethreitz/requests/issues/482/comments"

>>> r = requests.post(url=url, data=body)
>>> r.status_code
404

Huh, that's weird. We probably need to authenticate. That'll be a pain, right?
Wrong. Requests makes it easy to use many forms of authentication, including
the very common Basic Auth.

>>> from requests.auth import HTTPBasicAuth
>>> auth = HTTPBasicAuth('fake@example.com', 'not_a_real_password')

>>> r = requests.post(url=url, data=body, auth=auth)
>>> r.status_code
201

>>> content = r.json()
>>> print(content[u'body'])
Sounds great! I'll get right on it.

Brilliant. Oh, wait, no! I meant to add that it would take me a while, because
I had to go feed my cat. If only I could edit this comment! Happily, GitHub
allows us to use another HTTP verb, PATCH, to edit this comment. Let's do
that.

>>> print(content[u"id"])
5804413

>>> body = json.dumps({u"body": u"Sounds great! I'll get right on it once I feed my cat."})
>>> url = u"https://api.github.com/repos/kennethreitz/requests/issues/comments/5804413"

>>> r = requests.patch(url=url, data=body, auth=auth)
>>> r.status_code
200

Excellent. Now, just to torture this Kenneth guy, I've decided to let him
sweat and not tell him that I'm working on this. That means I want to delete
this comment. GitHub lets us delete comments using the incredibly aptly named
DELETE method. Let's get rid of it.

>>> r = requests.delete(url=url, auth=auth)
>>> r.status_code
204
>>> r.headers['status']
'204 No Content'

Excellent. All gone. The last thing I want to know is how much of my ratelimit
I've used. Let's find out. GitHub sends that information in the headers, so
rather than download the whole page I'll send a HEAD request to get the
headers.

>>> r = requests.head(url=url, auth=auth)
>>> print(r.headers)
...
'x-ratelimit-remaining': '4995'
'x-ratelimit-limit': '5000'
...

Excellent. Time to write a Python program that abuses the GitHub API in all
kinds of exciting ways, 4995 more times.

Link Headers

Many HTTP APIs feature Link headers. They make APIs more self describing and
discoverable.

GitHub uses these for pagination [http://developer.github.com/v3/#pagination]
in their API, for example:

>>> url = 'https://api.github.com/users/kennethreitz/repos?page=1&per_page=10'
>>> r = requests.head(url=url)
>>> r.headers['link']
'<https://api.github.com/users/kennethreitz/repos?page=2&per_page=10>; rel="next", <https://api.github.com/users/kennethreitz/repos?page=6&per_page=10>; rel="last"'

Requests will automatically parse these link headers and make them easily consumable:

>>> r.links["next"]
{'url': 'https://api.github.com/users/kennethreitz/repos?page=2&per_page=10', 'rel': 'next'}

>>> r.links["last"]
{'url': 'https://api.github.com/users/kennethreitz/repos?page=7&per_page=10', 'rel': 'last'}

Transport Adapters

As of v1.0.0, Requests has moved to a modular internal design. Part of the
reason this was done was to implement Transport Adapters, originally
described here [http://www.kennethreitz.org/essays/the-future-of-python-http]. Transport Adapters provide a mechanism to define interaction
methods for an HTTP service. In particular, they allow you to apply per-service
configuration.

Requests ships with a single Transport Adapter, the HTTPAdapter. This adapter provides the default Requests
interaction with HTTP and HTTPS using the powerful urllib3 [https://github.com/shazow/urllib3] library. Whenever
a Requests Session is initialized, one of these is
attached to the Session object for HTTP, and one
for HTTPS.

Requests enables users to create and use their own Transport Adapters that
provide specific functionality. Once created, a Transport Adapter can be
mounted to a Session object, along with an indication of which web services
it should apply to.

>>> s = requests.Session()
>>> s.mount('http://www.github.com', MyAdapter())

The mount call registers a specific instance of a Transport Adapter to a
prefix. Once mounted, any HTTP request made using that session whose URL starts
with the given prefix will use the given Transport Adapter.

Many of the details of implementing a Transport Adapter are beyond the scope of
this documentation, but take a look at the next example for a simple SSL use-
case. For more than that, you might look at subclassing
requests.adapters.BaseAdapter.

Example: Specific SSL Version

The Requests team has made a specific choice to use whatever SSL version is
default in the underlying library (urllib3 [https://github.com/shazow/urllib3]). Normally this is fine, but from
time to time, you might find yourself needing to connect to a service-endpoint
that uses a version that isn't compatible with the default.

You can use Transport Adapters for this by taking most of the existing
implementation of HTTPAdapter, and adding a parameter ssl_version that gets
passed-through to urllib3. We'll make a TA that instructs the library to use
SSLv3:

import ssl

from requests.adapters import HTTPAdapter
from requests.packages.urllib3.poolmanager import PoolManager

class Ssl3HttpAdapter(HTTPAdapter):
 """"Transport adapter" that allows us to use SSLv3."""

 def init_poolmanager(self, connections, maxsize, block=False):
 self.poolmanager = PoolManager(
 num_pools=connections, maxsize=maxsize,
 block=block, ssl_version=ssl.PROTOCOL_SSLv3)

Blocking Or Non-Blocking?

With the default Transport Adapter in place, Requests does not provide any kind
of non-blocking IO. The Response.content
property will block until the entire response has been downloaded. If
you require more granularity, the streaming features of the library (see
Streaming Requests) allow you to retrieve smaller quantities of the
response at a time. However, these calls will still block.

If you are concerned about the use of blocking IO, there are lots of projects
out there that combine Requests with one of Python's asynchronicity frameworks.
Two excellent examples are grequests [https://github.com/kennethreitz/grequests] and requests-futures [https://github.com/ross/requests-futures].

Header Ordering

In unusual circumstances you may want to provide headers in an ordered manner. If you pass an OrderedDict to the headers keyword argument, that will provide the headers with an ordering. However, the ordering of the default headers used by Requests will be preferred, which means that if you override default headers in the headers keyword argument, they may appear out of order compared to other headers in that keyword argument.

If this is problematic, users should consider setting the default headers on a Session object, by setting Session to a custom OrderedDict. That ordering will always be preferred.

Timeouts

Most requests to external servers should have a timeout attached, in case the
server is not responding in a timely manner. Without a timeout, your code may
hang for minutes or more.

The connect timeout is the number of seconds Requests will wait for your
client to establish a connection to a remote machine (corresponding to the
connect() [http://linux.die.net/man/2/connect]) call on the socket. It's a good practice to set connect timeouts
to slightly larger than a multiple of 3, which is the default TCP packet
retransmission window [http://www.hjp.at/doc/rfc/rfc2988.txt].

Once your client has connected to the server and sent the HTTP request, the
read timeout is the number of seconds the client will wait for the server
to send a response. (Specifically, it's the number of seconds that the client
will wait between bytes sent from the server. In 99.9% of cases, this is the
time before the server sends the first byte).

If you specify a single value for the timeout, like this:

r = requests.get('https://github.com', timeout=5)

The timeout value will be applied to both the connect and the read
timeouts. Specify a tuple if you would like to set the values separately:

r = requests.get('https://github.com', timeout=(3.05, 27))

If the remote server is very slow, you can tell Requests to wait forever for
a response, by passing None as a timeout value and then retrieving a cup of
coffee.

r = requests.get('https://github.com', timeout=None)

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Authentication

This document discusses using various kinds of authentication with Requests.

Many web services require authentication, and there are many different types.
Below, we outline various forms of authentication available in Requests, from
the simple to the complex.

Basic Authentication

Many web services that require authentication accept HTTP Basic Auth. This is
the simplest kind, and Requests supports it straight out of the box.

Making requests with HTTP Basic Auth is very simple:

>>> from requests.auth import HTTPBasicAuth
>>> requests.get('https://api.github.com/user', auth=HTTPBasicAuth('user', 'pass'))
<Response [200]>

In fact, HTTP Basic Auth is so common that Requests provides a handy shorthand
for using it:

>>> requests.get('https://api.github.com/user', auth=('user', 'pass'))
<Response [200]>

Providing the credentials in a tuple like this is exactly the same as the
HTTPBasicAuth example above.

netrc Authentication

If no authentication method is given with the auth argument, Requests will
attempt to get the authentication credentials for the URL's hostname from the
user's netrc file. The netrc file overrides raw HTTP authentication headers
set with headers=.

If credentials for the hostname are found, the request is sent with HTTP Basic
Auth.

Digest Authentication

Another very popular form of HTTP Authentication is Digest Authentication,
and Requests supports this out of the box as well:

>>> from requests.auth import HTTPDigestAuth
>>> url = 'http://httpbin.org/digest-auth/auth/user/pass'
>>> requests.get(url, auth=HTTPDigestAuth('user', 'pass'))
<Response [200]>

OAuth 1 Authentication

A common form of authentication for several web APIs is OAuth. The requests-oauthlib
library allows Requests users to easily make OAuth authenticated requests:

>>> import requests
>>> from requests_oauthlib import OAuth1

>>> url = 'https://api.twitter.com/1.1/account/verify_credentials.json'
>>> auth = OAuth1('YOUR_APP_KEY', 'YOUR_APP_SECRET',
 'USER_OAUTH_TOKEN', 'USER_OAUTH_TOKEN_SECRET')

>>> requests.get(url, auth=auth)
<Response [200]>

For more information on how to OAuth flow works, please see the official OAuth [http://oauth.net/] website.
For examples and documentation on requests-oauthlib, please see the requests_oauthlib [https://github.com/requests/requests-oauthlib]
repository on GitHub

Other Authentication

Requests is designed to allow other forms of authentication to be easily and
quickly plugged in. Members of the open-source community frequently write
authentication handlers for more complicated or less commonly-used forms of
authentication. Some of the best have been brought together under the
Requests organization [https://github.com/requests], including:

	Kerberos [https://github.com/requests/requests-kerberos]

	NTLM [https://github.com/requests/requests-ntlm]

If you want to use any of these forms of authentication, go straight to their
GitHub page and follow the instructions.

New Forms of Authentication

If you can't find a good implementation of the form of authentication you
want, you can implement it yourself. Requests makes it easy to add your own
forms of authentication.

To do so, subclass AuthBase and implement the
__call__() method:

>>> import requests
>>> class MyAuth(requests.auth.AuthBase):
... def __call__(self, r):
... # Implement my authentication
... return r
...
>>> url = 'http://httpbin.org/get'
>>> requests.get(url, auth=MyAuth())
<Response [200]>

When an authentication handler is attached to a request,
it is called during request setup. The __call__ method must therefore do
whatever is required to make the authentication work. Some forms of
authentication will additionally add hooks to provide further functionality.

Further examples can be found under the Requests organization [https://github.com/requests] and in the
auth.py file.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Frequently Asked Questions

This part of the documentation answers common questions about Requests.

Encoded Data?

Requests automatically decompresses gzip-encoded responses, and does
its best to decode response content to unicode when possible.

You can get direct access to the raw response (and even the socket),
if needed as well.

Custom User-Agents?

Requests allows you to easily override User-Agent strings, along with
any other HTTP Header.

Why not Httplib2?

Chris Adams gave an excellent summary on
Hacker News [http://news.ycombinator.com/item?id=2884406]:

httplib2 is part of why you should use requests: it's far more respectable
as a client but not as well documented and it still takes way too much code
for basic operations. I appreciate what httplib2 is trying to do, that
there's a ton of hard low-level annoyances in building a modern HTTP
client, but really, just use requests instead. Kenneth Reitz is very
motivated and he gets the degree to which simple things should be simple
whereas httplib2 feels more like an academic exercise than something
people should use to build production systems[1].

Disclosure: I'm listed in the requests AUTHORS file but can claim credit
for, oh, about 0.0001% of the awesomeness.

1. http://code.google.com/p/httplib2/issues/detail?id=96 is a good example:
an annoying bug which affect many people, there was a fix available for
months, which worked great when I applied it in a fork and pounded a couple
TB of data through it, but it took over a year to make it into trunk and
even longer to make it onto PyPI where any other project which required "
httplib2" would get the working version.

Python 3 Support?

Yes! Here's a list of Python platforms that are officially
supported:

	Python 2.6

	Python 2.7

	Python 3.1

	Python 3.2

	Python 3.3

	Python 3.4

	PyPy 1.9

	PyPy 2.2

What are "hostname doesn't match" errors?

These errors occur when SSL certificate verification
fails to match the certificate the server responds with to the hostname
Requests thinks it's contacting. If you're certain the server's SSL setup is
correct (for example, because you can visit the site with your browser) and
you're using Python 2.6 or 2.7, a possible explanation is that you need
Server-Name-Indication.

Server-Name-Indication [https://en.wikipedia.org/wiki/Server_Name_Indication], or SNI, is an official extension to SSL where the
client tells the server what hostname it is contacting. This is important
when servers are using Virtual Hosting [https://en.wikipedia.org/wiki/Virtual_hosting]. When such servers are hosting
more than one SSL site they need to be able to return the appropriate
certificate based on the hostname the client is connecting to.

Python3 and Python 2.7.9+ include native support for SNI in their SSL modules.
For information on using SNI with Requests on Python < 2.7.9 refer to this
Stack Overflow answer [https://stackoverflow.com/questions/18578439/using-requests-with-tls-doesnt-give-sni-support/18579484#18579484].

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Recommended Packages and Extensions

Requests has a great variety of powerful and useful third-party extensions.
This page provides an overview of some of the best of them.

Certifi CA Bundle

Certifi [http://certifi.io/en/latest/] is a carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the
identity of TLS hosts. It has been extracted from the Requests project.

CacheControl

CacheControl [https://cachecontrol.readthedocs.io/en/latest/] is an extension that adds a full HTTP cache to Requests. This
makes your web requests substantially more efficient, and should be used
whenever you're making a lot of web requests.

Requests-Toolbelt

Requests-Toolbelt [http://toolbelt.readthedocs.io/en/latest/index.html] is a collection of utilities that some users of Requests may desire,
but do not belong in Requests proper. This library is actively maintained
by members of the Requests core team, and reflects the functionality most
requested by users within the community.

Requests-OAuthlib

requests-oauthlib [https://requests-oauthlib.readthedocs.io/en/latest/] makes it possible to do the OAuth dance from Requests
automatically. This is useful for the large number of websites that use OAuth
to provide authentication. It also provides a lot of tweaks that handle ways
that specific OAuth providers differ from the standard specifications.

Betamax

Betamax [https://github.com/sigmavirus24/betamax] records your HTTP interactions so the NSA does not have to.
A VCR imitation designed only for Python-Requests.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Integrations

ScraperWiki

ScraperWiki [https://scraperwiki.com/] is an excellent service that allows
you to run Python, Ruby, and PHP scraper scripts on the web. Now, Requests
v0.6.1 is available to use in your scrapers!

To give it a try, simply:

import requests

Python for iOS

Requests is built into the wonderful Python for iOS [https://itunes.apple.com/us/app/python-2.7-for-ios/id485729872?mt=Python8] runtime!

To give it a try, simply:

import requests

Articles & Talks

	Python for the Web [http://gun.io/blog/python-for-the-web/] teaches how to use Python to interact with the web, using Requests.

	Daniel Greenfeld's Review of Requests [http://pydanny.blogspot.com/2011/05/python-http-requests-for-humans.html]

	My 'Python for Humans' talk [http://python-for-humans.heroku.com] (audio [http://codeconf.s3.amazonaws.com/2011/pycodeconf/talks/PyCodeConf2011%20-%20Kenneth%20Reitz.m4a])

	Issac Kelly's 'Consuming Web APIs' talk [http://issackelly.github.com/Consuming-Web-APIs-with-Python-Talk/slides/slides.html]

	Blog post about Requests via Yum [http://arunsag.wordpress.com/2011/08/17/new-package-python-requests-http-for-humans/]

	Russian blog post introducing Requests [http://habrahabr.ru/blogs/python/126262/]

	Sending JSON in Requests [http://www.coglib.com/~icordasc/blog/2014/11/sending-json-in-requests.html]

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Support

If you have questions or issues about Requests, there are several options:

StackOverflow

If your question does not contain sensitive (possibly proprietary)
information or can be properly anonymized, please ask a question on
StackOverflow [https://stackoverflow.com/questions/tagged/python-requests]
and use the tag python-requests.

Send a Tweet

If your question is less than 140 characters, feel free to send a tweet to
@kennethreitz [https://twitter.com/kennethreitz],
@sigmavirus24 [https://twitter.com/sigmavirus24], or
@lukasaoz [https://twitter.com/lukasaoz].

File an Issue

If you notice some unexpected behaviour in Requests, or want to see support
for a new feature,
file an issue on GitHub [https://github.com/kennethreitz/requests/issues].

E-mail

I'm more than happy to answer any personal or in-depth questions about
Requests. Feel free to email
requests@kennethreitz.com.

IRC

The official Freenode channel for Requests is
#python-requests

The core developers of requests are on IRC throughout the day.
You can find them in #python-requests as:

	kennethreitz

	lukasa

	sigmavirus24

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Vulnerability Disclosure

If you think you have found a potential security vulnerability in requests,
please email sigmavirus24 and
Lukasa directly. Do not file a public issue.

Our PGP Key fingerprints are:

	0161 BB7E B208 B5E0 4FDC 9F81 D9DA 0A04 9113 F853 (@sigmavirus24)

	90DC AE40 FEA7 4B14 9B70 662D F25F 2144 EEC1 373D (@lukasa)

If English is not your first language, please try to describe the problem and
its impact to the best of your ability. For greater detail, please use your
native language and we will try our best to translate it using online services.

Please also include the code you used to find the problem and the shortest
amount of code necessary to reproduce it.

Please do not disclose this to anyone else. We will retrieve a CVE identifier
if necessary and give you full credit under whatever name or alias you provide.
We will only request an identifier when we have a fix and can publish it in a
release.

We will respect your privacy and will only publicize your involvement if you
grant us permission.

Process

This following information discusses the process the requests project follows
in response to vulnerability disclosures. If you are disclosing a
vulnerability, this section of the documentation lets you know how we will
respond to your disclosure.

Timeline

When you report an issue, one of the project members will respond to you within
two days at the outside. In most cases responses will be faster, usually
within 12 hours. This initial response will at the very least confirm receipt
of the report.

If we were able to rapidly reproduce the issue, the initial response will also
contain confirmation of the issue. If we are not, we will often ask for more
information about the reproduction scenario.

Our goal is to have a fix for any vulnerability released within two weeks of
the initial disclosure. This may potentially involve shipping an interim
release that simply disables function while a more mature fix can be prepared,
but will in the vast majority of cases mean shipping a complete release as soon
as possible.

Throughout the fix process we will keep you up to speed with how the fix is
progressing. Once the fix is prepared, we will notify you that we believe we
have a fix. Often we will ask you to confirm the fix resolves the problem in
your environment, especially if we are not confident of our reproduction
scenario.

At this point, we will prepare for the release. We will obtain a CVE number
if one is required, providing you with full credit for the discovery. We will
also decide on a planned release date, and let you know when it is. This
release date will always be on a weekday.

At this point we will reach out to our major downstream packagers to notify
them of an impending security-related patch so they can make arrangements. In
addition, these packagers will be provided with the intended patch ahead of
time, to ensure that they are able to promptly release their downstream
packages. Currently the list of people we actively contact ahead of a public
release is:

	Ralph Bean, Red Hat (@ralphbean)

	Daniele Tricoli, Debian (@eriol)

We will notify these individuals at least a week ahead of our planned release
date to ensure that they have sufficient time to prepare. If you believe you
should be on this list, please let one of the maintainers know at one of the
email addresses at the top of this article.

On release day, we will push the patch to our public repository, along with an
updated changelog that describes the issue and credits you. We will then issue
a PyPI release containing the patch.

At this point, we will publicise the release. This will involve mails to
mailing lists, Tweets, and all other communication mechanisms available to the
core team.

We will also explicitly mention which commits contain the fix to make it easier
for other distributors and users to easily patch their own versions of requests
if upgrading is not an option.

Previous CVEs

	Fixed in 2.6.0
	CVE 2015-2296 [http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-2296],
reported by Matthew Daley of BugFuzz [https://bugfuzz.com/].

	Fixed in 2.3.0
	CVE 2014-1829 [http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2014-1829]

	CVE 2014-1830 [http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2014-1830]

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Community Updates

If you'd like to stay up to date on the community and development of Requests,
there are several options:

GitHub

The best way to track the development of Requests is through
the GitHub repo [https://github.com/kennethreitz/requests].

Twitter

The author, Kenneth Reitz, often tweets about new features and releases of Requests.

Follow @kennethreitz [https://twitter.com/kennethreitz] for updates.

Release and Version History

Release History

2.10.0 (2016-04-29)

New Features

	SOCKS Proxy Support! (requires PySocks; $ pip install requests[socks])

Miscellaneous

	Updated bundled urllib3 to 1.15.1.

2.9.2 (2016-04-29)

Improvements

	Change built-in CaseInsensitiveDict (used for headers) to use OrderedDict
as its underlying datastore.

Bugfixes

	Don't use redirect_cache if allow_redirects=False

	When passed objects that throw exceptions from tell(), send them via
chunked transfer encoding instead of failing.

	Raise a ProxyError for proxy related connection issues.

2.9.1 (2015-12-21)

Bugfixes

	Resolve regression introduced in 2.9.0 that made it impossible to send binary
strings as bodies in Python 3.

	Fixed errors when calculating cookie expiration dates in certain locales.

Miscellaneous

	Updated bundled urllib3 to 1.13.1.

2.9.0 (2015-12-15)

Minor Improvements (Backwards compatible)

	The verify keyword argument now supports being passed a path to a
directory of CA certificates, not just a single-file bundle.

	Warnings are now emitted when sending files opened in text mode.

	Added the 511 Network Authentication Required status code to the status code
registry.

Bugfixes

	For file-like objects that are not seeked to the very beginning, we now
send the content length for the number of bytes we will actually read, rather
than the total size of the file, allowing partial file uploads.

	When uploading file-like objects, if they are empty or have no obvious
content length we set Transfer-Encoding: chunked rather than
Content-Length: 0.

	We correctly receive the response in buffered mode when uploading chunked
bodies.

	We now handle being passed a query string as a bytestring on Python 3, by
decoding it as UTF-8.

	Sessions are now closed in all cases (exceptional and not) when using the
functional API rather than leaking and waiting for the garbage collector to
clean them up.

	Correctly handle digest auth headers with a malformed qop directive that
contains no token, by treating it the same as if no qop directive was
provided at all.

	Minor performance improvements when removing specific cookies by name.

Miscellaneous

	Updated urllib3 to 1.13.

2.8.1 (2015-10-13)

Bugfixes

	Update certificate bundle to match certifi 2015.9.6.2's weak certificate
bundle.

	Fix a bug in 2.8.0 where requests would raise ConnectTimeout instead of
ConnectionError

	When using the PreparedRequest flow, requests will now correctly respect the
json parameter. Broken in 2.8.0.

	When using the PreparedRequest flow, requests will now correctly handle a
Unicode-string method name on Python 2. Broken in 2.8.0.

2.8.0 (2015-10-05)

Minor Improvements (Backwards Compatible)

	Requests now supports per-host proxies. This allows the proxies
dictionary to have entries of the form
{'<scheme>://<hostname>': '<proxy>'}. Host-specific proxies will be used
in preference to the previously-supported scheme-specific ones, but the
previous syntax will continue to work.

	Response.raise_for_status now prints the URL that failed as part of the
exception message.

	requests.utils.get_netrc_auth now takes an raise_errors kwarg,
defaulting to False. When True, errors parsing .netrc files cause
exceptions to be thrown.

	Change to bundled projects import logic to make it easier to unbundle
requests downstream.

	Changed the default User-Agent string to avoid leaking data on Linux: now
contains only the requests version.

Bugfixes

	The json parameter to post() and friends will now only be used if
neither data nor files are present, consistent with the
documentation.

	We now ignore empty fields in the NO_PROXY environment variable.

	Fixed problem where httplib.BadStatusLine would get raised if combining
stream=True with contextlib.closing.

	Prevented bugs where we would attempt to return the same connection back to
the connection pool twice when sending a Chunked body.

	Miscellaneous minor internal changes.

	Digest Auth support is now thread safe.

Updates

	Updated urllib3 to 1.12.

2.7.0 (2015-05-03)

This is the first release that follows our new release process. For more, see
our documentation [http://docs.python-requests.org/en/latest/community/release-process/].

Bugfixes

	Updated urllib3 to 1.10.4, resolving several bugs involving chunked transfer
encoding and response framing.

2.6.2 (2015-04-23)

Bugfixes

	Fix regression where compressed data that was sent as chunked data was not
properly decompressed. (#2561)

2.6.1 (2015-04-22)

Bugfixes

	Remove VendorAlias import machinery introduced in v2.5.2.

	Simplify the PreparedRequest.prepare API: We no longer require the user to
pass an empty list to the hooks keyword argument. (c.f. #2552)

	Resolve redirects now receives and forwards all of the original arguments to
the adapter. (#2503)

	Handle UnicodeDecodeErrors when trying to deal with a unicode URL that
cannot be encoded in ASCII. (#2540)

	Populate the parsed path of the URI field when performing Digest
Authentication. (#2426)

	Copy a PreparedRequest's CookieJar more reliably when it is not an instance
of RequestsCookieJar. (#2527)

2.6.0 (2015-03-14)

Bugfixes

	CVE-2015-2296: Fix handling of cookies on redirect. Previously a cookie
without a host value set would use the hostname for the redirected URL
exposing requests users to session fixation attacks and potentially cookie
stealing. This was disclosed privately by Matthew Daley of
BugFuzz [https://bugfuzz.com]. This affects all versions of requests from
v2.1.0 to v2.5.3 (inclusive on both ends).

	Fix error when requests is an install_requires dependency and python
setup.py test is run. (#2462)

	Fix error when urllib3 is unbundled and requests continues to use the
vendored import location.

	Include fixes to urllib3's header handling.

	Requests' handling of unvendored dependencies is now more restrictive.

Features and Improvements

	Support bytearrays when passed as parameters in the files argument.
(#2468)

	Avoid data duplication when creating a request with str, bytes, or
bytearray input to the files argument.

2.5.3 (2015-02-24)

Bugfixes

	Revert changes to our vendored certificate bundle. For more context see
(#2455, #2456, and http://bugs.python.org/issue23476)

2.5.2 (2015-02-23)

Features and Improvements

	Add sha256 fingerprint support. (shazow/urllib3#540 [https://github.com/shazow/urllib3/pull/540])

	Improve the performance of headers. (shazow/urllib3#544 [https://github.com/shazow/urllib3/pull/544])

Bugfixes

	Copy pip's import machinery. When downstream redistributors remove
requests.packages.urllib3 the import machinery will continue to let those
same symbols work. Example usage in requests' documentation and 3rd-party
libraries relying on the vendored copies of urllib3 will work without having
to fallback to the system urllib3.

	Attempt to quote parts of the URL on redirect if unquoting and then quoting
fails. (#2356)

	Fix filename type check for multipart form-data uploads. (#2411)

	Properly handle the case where a server issuing digest authentication
challenges provides both auth and auth-int qop-values. (#2408)

	Fix a socket leak. (shazow/urllib3#549 [https://github.com/shazow/urllib3/pull/549])

	Fix multiple Set-Cookie headers properly. (shazow/urllib3#534 [https://github.com/shazow/urllib3/pull/534])

	Disable the built-in hostname verification. (shazow/urllib3#526 [https://github.com/shazow/urllib3/pull/526])

	Fix the behaviour of decoding an exhausted stream. (shazow/urllib3#535 [https://github.com/shazow/urllib3/pull/535])

Security

	Pulled in an updated cacert.pem.

	Drop RC4 from the default cipher list. (shazow/urllib3#551 [https://github.com/shazow/urllib3/pull/551])

2.5.1 (2014-12-23)

Behavioural Changes

	Only catch HTTPErrors in raise_for_status (#2382)

Bugfixes

	Handle LocationParseError from urllib3 (#2344)

	Handle file-like object filenames that are not strings (#2379)

	Unbreak HTTPDigestAuth handler. Allow new nonces to be negotiated (#2389)

2.5.0 (2014-12-01)

Improvements

	Allow usage of urllib3's Retry object with HTTPAdapters (#2216)

	The iter_lines method on a response now accepts a delimiter with which
to split the content (#2295)

Behavioural Changes

	Add deprecation warnings to functions in requests.utils that will be removed
in 3.0 (#2309)

	Sessions used by the functional API are always closed (#2326)

	Restrict requests to HTTP/1.1 and HTTP/1.0 (stop accepting HTTP/0.9) (#2323)

Bugfixes

	Only parse the URL once (#2353)

	Allow Content-Length header to always be overridden (#2332)

	Properly handle files in HTTPDigestAuth (#2333)

	Cap redirect_cache size to prevent memory abuse (#2299)

	Fix HTTPDigestAuth handling of redirects after authenticating successfully
(#2253)

	Fix crash with custom method parameter to Session.request (#2317)

	Fix how Link headers are parsed using the regular expression library (#2271)

Documentation

	Add more references for interlinking (#2348)

	Update CSS for theme (#2290)

	Update width of buttons and sidebar (#2289)

	Replace references of Gittip with Gratipay (#2282)

	Add link to changelog in sidebar (#2273)

2.4.3 (2014-10-06)

Bugfixes

	Unicode URL improvements for Python 2.

	Re-order JSON param for backwards compat.

	Automatically defrag authentication schemes from host/pass URIs. (#2249 [https://github.com/kennethreitz/requests/issues/2249])

2.4.2 (2014-10-05)

Improvements

	FINALLY! Add json parameter for uploads! (#2258 [https://github.com/kennethreitz/requests/pull/2258])

	Support for bytestring URLs on Python 3.x (#2238 [https://github.com/kennethreitz/requests/pull/2238])

Bugfixes

	Avoid getting stuck in a loop (#2244 [https://github.com/kennethreitz/requests/pull/2244])

	Multiple calls to iter* fail with unhelpful error. (#2240 [https://github.com/kennethreitz/requests/issues/2240], #2241 [https://github.com/kennethreitz/requests/issues/2241])

Documentation

	Correct redirection introduction (#2245 [https://github.com/kennethreitz/requests/pull/2245/])

	Added example of how to send multiple files in one request. (#2227 [https://github.com/kennethreitz/requests/pull/2227/])

	Clarify how to pass a custom set of CAs (#2248 [https://github.com/kennethreitz/requests/pull/2248/])

2.4.1 (2014-09-09)

	Now has a "security" package extras set, $ pip install requests[security]

	Requests will now use Certifi if it is available.

	Capture and re-raise urllib3 ProtocolError

	Bugfix for responses that attempt to redirect to themselves forever (wtf?).

2.4.0 (2014-08-29)

Behavioral Changes

	Connection: keep-alive header is now sent automatically.

Improvements

	Support for connect timeouts! Timeout now accepts a tuple (connect, read) which is used to set individual connect and read timeouts.

	Allow copying of PreparedRequests without headers/cookies.

	Updated bundled urllib3 version.

	Refactored settings loading from environment -- new Session.merge_environment_settings.

	Handle socket errors in iter_content.

2.3.0 (2014-05-16)

API Changes

	New Response property is_redirect, which is true when the
library could have processed this response as a redirection (whether
or not it actually did).

	The timeout parameter now affects requests with both stream=True and
stream=False equally.

	The change in v2.0.0 to mandate explicit proxy schemes has been reverted.
Proxy schemes now default to http://.

	The CaseInsensitiveDict used for HTTP headers now behaves like a normal
dictionary when references as string or viewed in the interpreter.

Bugfixes

	No longer expose Authorization or Proxy-Authorization headers on redirect.
Fix CVE-2014-1829 and CVE-2014-1830 respectively.

	Authorization is re-evaluated each redirect.

	On redirect, pass url as native strings.

	Fall-back to autodetected encoding for JSON when Unicode detection fails.

	Headers set to None on the Session are now correctly not sent.

	Correctly honor decode_unicode even if it wasn't used earlier in the same
response.

	Stop advertising compress as a supported Content-Encoding.

	The Response.history parameter is now always a list.

	Many, many urllib3 bugfixes.

2.2.1 (2014-01-23)

Bugfixes

	Fixes incorrect parsing of proxy credentials that contain a literal or encoded '#' character.

	Assorted urllib3 fixes.

2.2.0 (2014-01-09)

API Changes

	New exception: ContentDecodingError. Raised instead of urllib3
DecodeError exceptions.

Bugfixes

	Avoid many many exceptions from the buggy implementation of proxy_bypass on OS X in Python 2.6.

	Avoid crashing when attempting to get authentication credentials from ~/.netrc when running as a user without a home directory.

	Use the correct pool size for pools of connections to proxies.

	Fix iteration of CookieJar objects.

	Ensure that cookies are persisted over redirect.

	Switch back to using chardet, since it has merged with charade.

2.1.0 (2013-12-05)

	Updated CA Bundle, of course.

	Cookies set on individual Requests through a Session (e.g. via Session.get()) are no longer persisted to the Session.

	Clean up connections when we hit problems during chunked upload, rather than leaking them.

	Return connections to the pool when a chunked upload is successful, rather than leaking it.

	Match the HTTPbis recommendation for HTTP 301 redirects.

	Prevent hanging when using streaming uploads and Digest Auth when a 401 is received.

	Values of headers set by Requests are now always the native string type.

	Fix previously broken SNI support.

	Fix accessing HTTP proxies using proxy authentication.

	Unencode HTTP Basic usernames and passwords extracted from URLs.

	Support for IP address ranges for no_proxy environment variable

	Parse headers correctly when users override the default Host: header.

	Avoid munging the URL in case of case-sensitive servers.

	Looser URL handling for non-HTTP/HTTPS urls.

	Accept unicode methods in Python 2.6 and 2.7.

	More resilient cookie handling.

	Make Response objects pickleable.

	Actually added MD5-sess to Digest Auth instead of pretending to like last time.

	Updated internal urllib3.

	Fixed @Lukasa's lack of taste.

2.0.1 (2013-10-24)

	Updated included CA Bundle with new mistrusts and automated process for the future

	Added MD5-sess to Digest Auth

	Accept per-file headers in multipart file POST messages.

	Fixed: Don't send the full URL on CONNECT messages.

	Fixed: Correctly lowercase a redirect scheme.

	Fixed: Cookies not persisted when set via functional API.

	Fixed: Translate urllib3 ProxyError into a requests ProxyError derived from ConnectionError.

	Updated internal urllib3 and chardet.

2.0.0 (2013-09-24)

API Changes:

	Keys in the Headers dictionary are now native strings on all Python versions,
i.e. bytestrings on Python 2, unicode on Python 3.

	Proxy URLs now must have an explicit scheme. A MissingSchema exception
will be raised if they don't.

	Timeouts now apply to read time if Stream=False.

	RequestException is now a subclass of IOError, not RuntimeError.

	Added new method to PreparedRequest objects: PreparedRequest.copy().

	Added new method to Session objects: Session.update_request(). This
method updates a Request object with the data (e.g. cookies) stored on
the Session.

	Added new method to Session objects: Session.prepare_request(). This
method updates and prepares a Request object, and returns the
corresponding PreparedRequest object.

	Added new method to HTTPAdapter objects: HTTPAdapter.proxy_headers().
This should not be called directly, but improves the subclass interface.

	httplib.IncompleteRead exceptions caused by incorrect chunked encoding
will now raise a Requests ChunkedEncodingError instead.

	Invalid percent-escape sequences now cause a Requests InvalidURL
exception to be raised.

	HTTP 208 no longer uses reason phrase "im_used". Correctly uses
"already_reported".

	HTTP 226 reason added ("im_used").

Bugfixes:

	Vastly improved proxy support, including the CONNECT verb. Special thanks to
the many contributors who worked towards this improvement.

	Cookies are now properly managed when 401 authentication responses are
received.

	Chunked encoding fixes.

	Support for mixed case schemes.

	Better handling of streaming downloads.

	Retrieve environment proxies from more locations.

	Minor cookies fixes.

	Improved redirect behaviour.

	Improved streaming behaviour, particularly for compressed data.

	Miscellaneous small Python 3 text encoding bugs.

	.netrc no longer overrides explicit auth.

	Cookies set by hooks are now correctly persisted on Sessions.

	Fix problem with cookies that specify port numbers in their host field.

	BytesIO can be used to perform streaming uploads.

	More generous parsing of the no_proxy environment variable.

	Non-string objects can be passed in data values alongside files.

1.2.3 (2013-05-25)

	Simple packaging fix

1.2.2 (2013-05-23)

	Simple packaging fix

1.2.1 (2013-05-20)

	301 and 302 redirects now change the verb to GET for all verbs, not just
POST, improving browser compatibility.

	Python 3.3.2 compatibility

	Always percent-encode location headers

	Fix connection adapter matching to be most-specific first

	new argument to the default connection adapter for passing a block argument

	prevent a KeyError when there's no link headers

1.2.0 (2013-03-31)

	Fixed cookies on sessions and on requests

	Significantly change how hooks are dispatched - hooks now receive all the
arguments specified by the user when making a request so hooks can make a
secondary request with the same parameters. This is especially necessary for
authentication handler authors

	certifi support was removed

	Fixed bug where using OAuth 1 with body signature_type sent no data

	Major proxy work thanks to @Lukasa including parsing of proxy authentication
from the proxy url

	Fix DigestAuth handling too many 401s

	Update vendored urllib3 to include SSL bug fixes

	Allow keyword arguments to be passed to json.loads() via the
Response.json() method

	Don't send Content-Length header by default on GET or HEAD
requests

	Add elapsed attribute to Response objects to time how long a request
took.

	Fix RequestsCookieJar

	Sessions and Adapters are now picklable, i.e., can be used with the
multiprocessing library

	Update charade to version 1.0.3

The change in how hooks are dispatched will likely cause a great deal of
issues.

1.1.0 (2013-01-10)

	CHUNKED REQUESTS

	Support for iterable response bodies

	Assume servers persist redirect params

	Allow explicit content types to be specified for file data

	Make merge_kwargs case-insensitive when looking up keys

1.0.3 (2012-12-18)

	Fix file upload encoding bug

	Fix cookie behavior

1.0.2 (2012-12-17)

	Proxy fix for HTTPAdapter.

1.0.1 (2012-12-17)

	Cert verification exception bug.

	Proxy fix for HTTPAdapter.

1.0.0 (2012-12-17)

	Massive Refactor and Simplification

	Switch to Apache 2.0 license

	Swappable Connection Adapters

	Mountable Connection Adapters

	Mutable ProcessedRequest chain

	/s/prefetch/stream

	Removal of all configuration

	Standard library logging

	Make Response.json() callable, not property.

	Usage of new charade project, which provides python 2 and 3 simultaneous chardet.

	Removal of all hooks except 'response'

	Removal of all authentication helpers (OAuth, Kerberos)

This is not a backwards compatible change.

0.14.2 (2012-10-27)

	Improved mime-compatible JSON handling

	Proxy fixes

	Path hack fixes

	Case-Insensitive Content-Encoding headers

	Support for CJK parameters in form posts

0.14.1 (2012-10-01)

	Python 3.3 Compatibility

	Simply default accept-encoding

	Bugfixes

0.14.0 (2012-09-02)

	No more iter_content errors if already downloaded.

0.13.9 (2012-08-25)

	Fix for OAuth + POSTs

	Remove exception eating from dispatch_hook

	General bugfixes

0.13.8 (2012-08-21)

	Incredible Link header support :)

0.13.7 (2012-08-19)

	Support for (key, value) lists everywhere.

	Digest Authentication improvements.

	Ensure proxy exclusions work properly.

	Clearer UnicodeError exceptions.

	Automatic casting of URLs to strings (fURL and such)

	Bugfixes.

0.13.6 (2012-08-06)

	Long awaited fix for hanging connections!

0.13.5 (2012-07-27)

	Packaging fix

0.13.4 (2012-07-27)

	GSSAPI/Kerberos authentication!

	App Engine 2.7 Fixes!

	Fix leaking connections (from urllib3 update)

	OAuthlib path hack fix

	OAuthlib URL parameters fix.

0.13.3 (2012-07-12)

	Use simplejson if available.

	Do not hide SSLErrors behind Timeouts.

	Fixed param handling with urls containing fragments.

	Significantly improved information in User Agent.

	client certificates are ignored when verify=False

0.13.2 (2012-06-28)

	Zero dependencies (once again)!

	New: Response.reason

	Sign querystring parameters in OAuth 1.0

	Client certificates no longer ignored when verify=False

	Add openSUSE certificate support

0.13.1 (2012-06-07)

	Allow passing a file or file-like object as data.

	Allow hooks to return responses that indicate errors.

	Fix Response.text and Response.json for body-less responses.

0.13.0 (2012-05-29)

	Removal of Requests.async in favor of grequests [https://github.com/kennethreitz/grequests]

	Allow disabling of cookie persistence.

	New implementation of safe_mode

	cookies.get now supports default argument

	Session cookies not saved when Session.request is called with return_response=False

	Env: no_proxy support.

	RequestsCookieJar improvements.

	Various bug fixes.

0.12.1 (2012-05-08)

	New Response.json property.

	Ability to add string file uploads.

	Fix out-of-range issue with iter_lines.

	Fix iter_content default size.

	Fix POST redirects containing files.

0.12.0 (2012-05-02)

	EXPERIMENTAL OAUTH SUPPORT!

	Proper CookieJar-backed cookies interface with awesome dict-like interface.

	Speed fix for non-iterated content chunks.

	Move pre_request to a more usable place.

	New pre_send hook.

	Lazily encode data, params, files.

	Load system Certificate Bundle if certify isn't available.

	Cleanups, fixes.

0.11.2 (2012-04-22)

	Attempt to use the OS's certificate bundle if certifi isn't available.

	Infinite digest auth redirect fix.

	Multi-part file upload improvements.

	Fix decoding of invalid %encodings in URLs.

	If there is no content in a response don't throw an error the second time that content is attempted to be read.

	Upload data on redirects.

0.11.1 (2012-03-30)

	POST redirects now break RFC to do what browsers do: Follow up with a GET.

	New strict_mode configuration to disable new redirect behavior.

0.11.0 (2012-03-14)

	Private SSL Certificate support

	Remove select.poll from Gevent monkeypatching

	Remove redundant generator for chunked transfer encoding

	Fix: Response.ok raises Timeout Exception in safe_mode

0.10.8 (2012-03-09)

	Generate chunked ValueError fix

	Proxy configuration by environment variables

	Simplification of iter_lines.

	New trust_env configuration for disabling system/environment hints.

	Suppress cookie errors.

0.10.7 (2012-03-07)

	encode_uri = False

0.10.6 (2012-02-25)

	Allow '=' in cookies.

0.10.5 (2012-02-25)

	Response body with 0 content-length fix.

	New async.imap.

	Don't fail on netrc.

0.10.4 (2012-02-20)

	Honor netrc.

0.10.3 (2012-02-20)

	HEAD requests don't follow redirects anymore.

	raise_for_status() doesn't raise for 3xx anymore.

	Make Session objects picklable.

	ValueError for invalid schema URLs.

0.10.2 (2012-01-15)

	Vastly improved URL quoting.

	Additional allowed cookie key values.

	Attempted fix for "Too many open files" Error

	Replace unicode errors on first pass, no need for second pass.

	Append '/' to bare-domain urls before query insertion.

	Exceptions now inherit from RuntimeError.

	Binary uploads + auth fix.

	Bugfixes.

0.10.1 (2012-01-23)

	PYTHON 3 SUPPORT!

	Dropped 2.5 Support. (Backwards Incompatible)

0.10.0 (2012-01-21)

	Response.content is now bytes-only. (Backwards Incompatible)

	New Response.text is unicode-only.

	If no Response.encoding is specified and chardet is available, Response.text will guess an encoding.

	Default to ISO-8859-1 (Western) encoding for "text" subtypes.

	Removal of decode_unicode. (Backwards Incompatible)

	New multiple-hooks system.

	New Response.register_hook for registering hooks within the pipeline.

	Response.url is now Unicode.

0.9.3 (2012-01-18)

	SSL verify=False bugfix (apparent on windows machines).

0.9.2 (2012-01-18)

	Asynchronous async.send method.

	Support for proper chunk streams with boundaries.

	session argument for Session classes.

	Print entire hook tracebacks, not just exception instance.

	Fix response.iter_lines from pending next line.

	Fix but in HTTP-digest auth w/ URI having query strings.

	Fix in Event Hooks section.

	Urllib3 update.

0.9.1 (2012-01-06)

	danger_mode for automatic Response.raise_for_status()

	Response.iter_lines refactor

0.9.0 (2011-12-28)

	verify ssl is default.

0.8.9 (2011-12-28)

	Packaging fix.

0.8.8 (2011-12-28)

	SSL CERT VERIFICATION!

	Release of Cerifi: Mozilla's cert list.

	New 'verify' argument for SSL requests.

	Urllib3 update.

0.8.7 (2011-12-24)

	iter_lines last-line truncation fix

	Force safe_mode for async requests

	Handle safe_mode exceptions more consistently

	Fix iteration on null responses in safe_mode

0.8.6 (2011-12-18)

	Socket timeout fixes.

	Proxy Authorization support.

0.8.5 (2011-12-14)

	Response.iter_lines!

0.8.4 (2011-12-11)

	Prefetch bugfix.

	Added license to installed version.

0.8.3 (2011-11-27)

	Converted auth system to use simpler callable objects.

	New session parameter to API methods.

	Display full URL while logging.

0.8.2 (2011-11-19)

	New Unicode decoding system, based on over-ridable Response.encoding.

	Proper URL slash-quote handling.

	Cookies with [,], and _ allowed.

0.8.1 (2011-11-15)

	URL Request path fix

	Proxy fix.

	Timeouts fix.

0.8.0 (2011-11-13)

	Keep-alive support!

	Complete removal of Urllib2

	Complete removal of Poster

	Complete removal of CookieJars

	New ConnectionError raising

	Safe_mode for error catching

	prefetch parameter for request methods

	OPTION method

	Async pool size throttling

	File uploads send real names

	Vendored in urllib3

0.7.6 (2011-11-07)

	Digest authentication bugfix (attach query data to path)

0.7.5 (2011-11-04)

	Response.content = None if there was an invalid response.

	Redirection auth handling.

0.7.4 (2011-10-26)

	Session Hooks fix.

0.7.3 (2011-10-23)

	Digest Auth fix.

0.7.2 (2011-10-23)

	PATCH Fix.

0.7.1 (2011-10-23)

	Move away from urllib2 authentication handling.

	Fully Remove AuthManager, AuthObject, &c.

	New tuple-based auth system with handler callbacks.

0.7.0 (2011-10-22)

	Sessions are now the primary interface.

	Deprecated InvalidMethodException.

	PATCH fix.

	New config system (no more global settings).

0.6.6 (2011-10-19)

	Session parameter bugfix (params merging).

0.6.5 (2011-10-18)

	Offline (fast) test suite.

	Session dictionary argument merging.

0.6.4 (2011-10-13)

	Automatic decoding of unicode, based on HTTP Headers.

	New decode_unicode setting.

	Removal of r.read/close methods.

	New r.faw interface for advanced response usage.*

	Automatic expansion of parameterized headers.

0.6.3 (2011-10-13)

	Beautiful requests.async module, for making async requests w/ gevent.

0.6.2 (2011-10-09)

	GET/HEAD obeys allow_redirects=False.

0.6.1 (2011-08-20)

	Enhanced status codes experience \o/

	Set a maximum number of redirects (settings.max_redirects)

	Full Unicode URL support

	Support for protocol-less redirects.

	Allow for arbitrary request types.

	Bugfixes

0.6.0 (2011-08-17)

	New callback hook system

	New persistent sessions object and context manager

	Transparent Dict-cookie handling

	Status code reference object

	Removed Response.cached

	Added Response.request

	All args are kwargs

	Relative redirect support

	HTTPError handling improvements

	Improved https testing

	Bugfixes

0.5.1 (2011-07-23)

	International Domain Name Support!

	Access headers without fetching entire body (read())

	Use lists as dicts for parameters

	Add Forced Basic Authentication

	Forced Basic is default authentication type

	python-requests.org default User-Agent header

	CaseInsensitiveDict lower-case caching

	Response.history bugfix

0.5.0 (2011-06-21)

	PATCH Support

	Support for Proxies

	HTTPBin Test Suite

	Redirect Fixes

	settings.verbose stream writing

	Querystrings for all methods

	URLErrors (Connection Refused, Timeout, Invalid URLs) are treated as explicitly raised
r.requests.get('hwe://blah'); r.raise_for_status()

0.4.1 (2011-05-22)

	Improved Redirection Handling

	New 'allow_redirects' param for following non-GET/HEAD Redirects

	Settings module refactoring

0.4.0 (2011-05-15)

	Response.history: list of redirected responses

	Case-Insensitive Header Dictionaries!

	Unicode URLs

0.3.4 (2011-05-14)

	Urllib2 HTTPAuthentication Recursion fix (Basic/Digest)

	Internal Refactor

	Bytes data upload Bugfix

0.3.3 (2011-05-12)

	Request timeouts

	Unicode url-encoded data

	Settings context manager and module

0.3.2 (2011-04-15)

	Automatic Decompression of GZip Encoded Content

	AutoAuth Support for Tupled HTTP Auth

0.3.1 (2011-04-01)

	Cookie Changes

	Response.read()

	Poster fix

0.3.0 (2011-02-25)

	Automatic Authentication API Change

	Smarter Query URL Parameterization

	Allow file uploads and POST data together

	
	New Authentication Manager System

	
	Simpler Basic HTTP System

	Supports all build-in urllib2 Auths

	Allows for custom Auth Handlers

0.2.4 (2011-02-19)

	Python 2.5 Support

	PyPy-c v1.4 Support

	Auto-Authentication tests

	Improved Request object constructor

0.2.3 (2011-02-15)

	
	New HTTPHandling Methods

	
	Response.__nonzero__ (false if bad HTTP Status)

	Response.ok (True if expected HTTP Status)

	Response.error (Logged HTTPError if bad HTTP Status)

	Response.raise_for_status() (Raises stored HTTPError)

0.2.2 (2011-02-14)

	Still handles request in the event of an HTTPError. (Issue #2)

	Eventlet and Gevent Monkeypatch support.

	Cookie Support (Issue #1)

0.2.1 (2011-02-14)

	Added file attribute to POST and PUT requests for multipart-encode file uploads.

	Added Request.url attribute for context and redirects

0.2.0 (2011-02-14)

	Birth!

0.0.1 (2011-02-13)

	Frustration

	Conception

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Release Process and Rules

New in version v2.6.2.

Starting with the version to be released after v2.6.2, the following rules
will govern and describe how the Requests core team produces a new release.

Major Releases

A major release will include breaking changes. When it is versioned, it will
be versioned as vX.0.0. For example, if the previous release was
v10.2.7 the next version will be v11.0.0.

Breaking changes are changes that break backwards compatibility with prior
versions. If the project were to change the text attribute on a
Response object to a method, that would only happen in a Major release.

Major releases may also include miscellaneous bug fixes and upgrades to
vendored packages. The core developers of Requests are committed to providing
a good user experience. This means we're also committed to preserving
backwards compatibility as much as possible. Major releases will be infrequent
and will need strong justifications before they are considered.

Minor Releases

A minor release will not include breaking changes but may include
miscellaneous bug fixes and upgrades to vendored packages. If the previous
version of Requests released was v10.2.7 a minor release would be
versioned as v10.3.0.

Minor releases will be backwards compatible with releases that have the same
major version number. In other words, all versions that would start with
v10. should be compatible with each other.

Hotfix Releases

A hotfix release will only include bug fixes that were missed when the project
released the previous version. If the previous version of Requests released
v10.2.7 the hotfix release would be versioned as v10.2.8.

Hotfixes will not include upgrades to vendored dependences after
v2.6.2

Reasoning

In the 2.5 and 2.6 release series, the Requests core team upgraded vendored
dependencies and caused a great deal of headaches for both users and the core
team. To reduce this pain, we're forming a concrete set of procedures so
expectations will be properly set.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Developer Interface

This part of the documentation covers all the interfaces of Requests. For
parts where Requests depends on external libraries, we document the most
important right here and provide links to the canonical documentation.

Main Interface

All of Requests' functionality can be accessed by these 7 methods.
They all return an instance of the Response object.

	
requests.request(method, url, **kwargs)[source]

	Constructs and sends a Request.

	Parameters:	
	method -- method for the new Request object.

	url -- URL for the new Request object.

	params -- (optional) Dictionary or bytes to be sent in the query string for the Request.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	json -- (optional) json data to send in the body of the Request.

	headers -- (optional) Dictionary of HTTP Headers to send with the Request.

	cookies -- (optional) Dict or CookieJar object to send with the Request.

	files -- (optional) Dictionary of 'name': file-like-objects (or {'name': file-tuple}) for multipart encoding upload.
file-tuple can be a 2-tuple ('filename', fileobj), 3-tuple ('filename', fileobj, 'content_type')
or a 4-tuple ('filename', fileobj, 'content_type', custom_headers), where 'content-type' is a string
defining the content type of the given file and custom_headers a dict-like object containing additional headers
to add for the file.

	auth -- (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.

	timeout (float or tuple) -- (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read
timeout) tuple.

	allow_redirects (bool) -- (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed.

	proxies -- (optional) Dictionary mapping protocol to the URL of the proxy.

	verify -- (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to True.

	stream -- (optional) if False, the response content will be immediately downloaded.

	cert -- (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.

	Returns:	Response object

	Return type:	requests.Response

Usage:

>>> import requests
>>> req = requests.request('GET', 'http://httpbin.org/get')
<Response [200]>

	
requests.head(url, **kwargs)[source]

	Sends a HEAD request.

	Parameters:	
	url -- URL for the new Request object.

	**kwargs -- Optional arguments that request takes.

	Returns:	Response object

	Return type:	requests.Response

	
requests.get(url, params=None, **kwargs)[source]

	Sends a GET request.

	Parameters:	
	url -- URL for the new Request object.

	params -- (optional) Dictionary or bytes to be sent in the query string for the Request.

	**kwargs -- Optional arguments that request takes.

	Returns:	Response object

	Return type:	requests.Response

	
requests.post(url, data=None, json=None, **kwargs)[source]

	Sends a POST request.

	Parameters:	
	url -- URL for the new Request object.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	json -- (optional) json data to send in the body of the Request.

	**kwargs -- Optional arguments that request takes.

	Returns:	Response object

	Return type:	requests.Response

	
requests.put(url, data=None, **kwargs)[source]

	Sends a PUT request.

	Parameters:	
	url -- URL for the new Request object.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	**kwargs -- Optional arguments that request takes.

	Returns:	Response object

	Return type:	requests.Response

	
requests.patch(url, data=None, **kwargs)[source]

	Sends a PATCH request.

	Parameters:	
	url -- URL for the new Request object.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	**kwargs -- Optional arguments that request takes.

	Returns:	Response object

	Return type:	requests.Response

	
requests.delete(url, **kwargs)[source]

	Sends a DELETE request.

	Parameters:	
	url -- URL for the new Request object.

	**kwargs -- Optional arguments that request takes.

	Returns:	Response object

	Return type:	requests.Response

Exceptions

	
exception requests.RequestException(*args, **kwargs)[source]

	There was an ambiguous exception that occurred while handling your
request.

	
exception requests.ConnectionError(*args, **kwargs)[source]

	A Connection error occurred.

	
exception requests.HTTPError(*args, **kwargs)[source]

	An HTTP error occurred.

	
exception requests.URLRequired(*args, **kwargs)[source]

	A valid URL is required to make a request.

	
exception requests.TooManyRedirects(*args, **kwargs)[source]

	Too many redirects.

	
exception requests.ConnectTimeout(*args, **kwargs)[source]

	The request timed out while trying to connect to the remote server.

Requests that produced this error are safe to retry.

	
exception requests.ReadTimeout(*args, **kwargs)[source]

	The server did not send any data in the allotted amount of time.

	
exception requests.Timeout(*args, **kwargs)[source]

	The request timed out.

Catching this error will catch both
ConnectTimeout and
ReadTimeout errors.

Request Sessions

	
class requests.Session[source]

	A Requests session.

Provides cookie persistence, connection-pooling, and configuration.

Basic Usage:

>>> import requests
>>> s = requests.Session()
>>> s.get('http://httpbin.org/get')
<Response [200]>

Or as a context manager:

>>> with requests.Session() as s:
>>> s.get('http://httpbin.org/get')
<Response [200]>

	
auth = None

	Default Authentication tuple or object to attach to
Request.

	
cert = None

	SSL certificate default.

	
close()[source]

	Closes all adapters and as such the session

	
cookies = None

	A CookieJar containing all currently outstanding cookies set on this
session. By default it is a
RequestsCookieJar, but
may be any other cookielib.CookieJar compatible object.

	
delete(url, **kwargs)[source]

	Sends a DELETE request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	**kwargs -- Optional arguments that request takes.

	
get(url, **kwargs)[source]

	Sends a GET request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	**kwargs -- Optional arguments that request takes.

	
get_adapter(url)[source]

	Returns the appropriate connection adapter for the given URL.

	
head(url, **kwargs)[source]

	Sends a HEAD request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	**kwargs -- Optional arguments that request takes.

	
headers = None

	A case-insensitive dictionary of headers to be sent on each
Request sent from this
Session.

	
hooks = None

	Event-handling hooks.

	
max_redirects = None

	Maximum number of redirects allowed. If the request exceeds this
limit, a TooManyRedirects exception is raised.
This defaults to requests.models.DEFAULT_REDIRECT_LIMIT, which is
30.

	
merge_environment_settings(url, proxies, stream, verify, cert)[source]

	Check the environment and merge it with some settings.

	
mount(prefix, adapter)[source]

	Registers a connection adapter to a prefix.

Adapters are sorted in descending order by key length.

	
options(url, **kwargs)[source]

	Sends a OPTIONS request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	**kwargs -- Optional arguments that request takes.

	
params = None

	Dictionary of querystring data to attach to each
Request. The dictionary values may be lists for
representing multivalued query parameters.

	
patch(url, data=None, **kwargs)[source]

	Sends a PATCH request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	**kwargs -- Optional arguments that request takes.

	
post(url, data=None, json=None, **kwargs)[source]

	Sends a POST request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	json -- (optional) json to send in the body of the Request.

	**kwargs -- Optional arguments that request takes.

	
prepare_request(request)[source]

	Constructs a PreparedRequest for
transmission and returns it. The PreparedRequest has settings
merged from the Request instance and those of the
Session.

	Parameters:	request -- Request instance to prepare with this
session's settings.

	
proxies = None

	Dictionary mapping protocol or protocol and host to the URL of the proxy
(e.g. {'http': 'foo.bar:3128', 'http://host.name': 'foo.bar:4012'}) to
be used on each Request.

	
put(url, data=None, **kwargs)[source]

	Sends a PUT request. Returns Response object.

	Parameters:	
	url -- URL for the new Request object.

	data -- (optional) Dictionary, bytes, or file-like object to send in the body of the Request.

	**kwargs -- Optional arguments that request takes.

	
rebuild_auth(prepared_request, response)

	When being redirected we may want to strip authentication from the
request to avoid leaking credentials. This method intelligently removes
and reapplies authentication where possible to avoid credential loss.

	
rebuild_method(prepared_request, response)

	When being redirected we may want to change the method of the request
based on certain specs or browser behavior.

	
rebuild_proxies(prepared_request, proxies)

	This method re-evaluates the proxy configuration by considering the
environment variables. If we are redirected to a URL covered by
NO_PROXY, we strip the proxy configuration. Otherwise, we set missing
proxy keys for this URL (in case they were stripped by a previous
redirect).

This method also replaces the Proxy-Authorization header where
necessary.

	
request(method, url, params=None, data=None, headers=None, cookies=None, files=None, auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None, stream=None, verify=None, cert=None, json=None)[source]

	Constructs a Request, prepares it and sends it.
Returns Response object.

	Parameters:	
	method -- method for the new Request object.

	url -- URL for the new Request object.

	params -- (optional) Dictionary or bytes to be sent in the query
string for the Request.

	data -- (optional) Dictionary, bytes, or file-like object to send
in the body of the Request.

	json -- (optional) json to send in the body of the
Request.

	headers -- (optional) Dictionary of HTTP Headers to send with the
Request.

	cookies -- (optional) Dict or CookieJar object to send with the
Request.

	files -- (optional) Dictionary of 'filename': file-like-objects
for multipart encoding upload.

	auth -- (optional) Auth tuple or callable to enable
Basic/Digest/Custom HTTP Auth.

	timeout (float or tuple) -- (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	allow_redirects (bool) -- (optional) Set to True by default.

	proxies -- (optional) Dictionary mapping protocol or protocol and
hostname to the URL of the proxy.

	stream -- (optional) whether to immediately download the response
content. Defaults to False.

	verify -- (optional) whether the SSL cert will be verified.
A CA_BUNDLE path can also be provided. Defaults to True.

	cert -- (optional) if String, path to ssl client cert file (.pem).
If Tuple, ('cert', 'key') pair.

	Return type:	requests.Response

	
resolve_redirects(resp, req, stream=False, timeout=None, verify=True, cert=None, proxies=None, **adapter_kwargs)

	Receives a Response. Returns a generator of Responses.

	
send(request, **kwargs)[source]

	Send a given PreparedRequest.

	
stream = None

	Stream response content default.

	
trust_env = None

	Trust environment settings for proxy configuration, default
authentication and similar.

	
verify = None

	SSL Verification default.

Lower-Level Classes

	
class requests.Request(method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None)[source]

	A user-created Request object.

Used to prepare a PreparedRequest, which is sent to the server.

	Parameters:	
	method -- HTTP method to use.

	url -- URL to send.

	headers -- dictionary of headers to send.

	files -- dictionary of {filename: fileobject} files to multipart upload.

	data -- the body to attach to the request. If a dictionary is provided, form-encoding will take place.

	json -- json for the body to attach to the request (if files or data is not specified).

	params -- dictionary of URL parameters to append to the URL.

	auth -- Auth handler or (user, pass) tuple.

	cookies -- dictionary or CookieJar of cookies to attach to this request.

	hooks -- dictionary of callback hooks, for internal usage.

Usage:

>>> import requests
>>> req = requests.Request('GET', 'http://httpbin.org/get')
>>> req.prepare()
<PreparedRequest [GET]>

	
deregister_hook(event, hook)

	Deregister a previously registered hook.
Returns True if the hook existed, False if not.

	
prepare()[source]

	Constructs a PreparedRequest for transmission and returns it.

	
register_hook(event, hook)

	Properly register a hook.

	
class requests.Response[source]

	The Response object, which contains a
server's response to an HTTP request.

	
apparent_encoding

	The apparent encoding, provided by the chardet library

	
close()[source]

	Releases the connection back to the pool. Once this method has been
called the underlying raw object must not be accessed again.

Note: Should not normally need to be called explicitly.

	
content

	Content of the response, in bytes.

	
cookies = None

	A CookieJar of Cookies the server sent back.

	
elapsed = None

	The amount of time elapsed between sending the request
and the arrival of the response (as a timedelta).
This property specifically measures the time taken between sending
the first byte of the request and finishing parsing the headers. It
is therefore unaffected by consuming the response content or the
value of the stream keyword argument.

	
encoding = None

	Encoding to decode with when accessing r.text.

	
headers = None

	Case-insensitive Dictionary of Response Headers.
For example, headers['content-encoding'] will return the
value of a 'Content-Encoding' response header.

	
history = None

	A list of Response objects from
the history of the Request. Any redirect responses will end
up here. The list is sorted from the oldest to the most recent request.

	
is_permanent_redirect

	True if this Response one of the permanent versions of redirect

	
is_redirect

	True if this Response is a well-formed HTTP redirect that could have
been processed automatically (by Session.resolve_redirects).

	
iter_content(chunk_size=1, decode_unicode=False)[source]

	Iterates over the response data. When stream=True is set on the
request, this avoids reading the content at once into memory for
large responses. The chunk size is the number of bytes it should
read into memory. This is not necessarily the length of each item
returned as decoding can take place.

If decode_unicode is True, content will be decoded using the best
available encoding based on the response.

	
iter_lines(chunk_size=512, decode_unicode=None, delimiter=None)[source]

	Iterates over the response data, one line at a time. When
stream=True is set on the request, this avoids reading the
content at once into memory for large responses.

Note

This method is not reentrant safe.

	
json(**kwargs)[source]

	Returns the json-encoded content of a response, if any.

	Parameters:	**kwargs -- Optional arguments that json.loads takes.

	
links

	Returns the parsed header links of the response, if any.

	
raise_for_status()[source]

	Raises stored HTTPError, if one occurred.

	
raw = None

	File-like object representation of response (for advanced usage).
Use of raw requires that stream=True be set on the request.

	
reason = None

	Textual reason of responded HTTP Status, e.g. "Not Found" or "OK".

	
request = None

	The PreparedRequest object to which this
is a response.

	
status_code = None

	Integer Code of responded HTTP Status, e.g. 404 or 200.

	
text

	Content of the response, in unicode.

If Response.encoding is None, encoding will be guessed using
chardet.

The encoding of the response content is determined based solely on HTTP
headers, following RFC 2616 to the letter. If you can take advantage of
non-HTTP knowledge to make a better guess at the encoding, you should
set r.encoding appropriately before accessing this property.

	
url = None

	Final URL location of Response.

Lower-Lower-Level Classes

	
class requests.PreparedRequest[source]

	The fully mutable PreparedRequest object,
containing the exact bytes that will be sent to the server.

Generated from either a Request object or manually.

Usage:

>>> import requests
>>> req = requests.Request('GET', 'http://httpbin.org/get')
>>> r = req.prepare()
<PreparedRequest [GET]>

>>> s = requests.Session()
>>> s.send(r)
<Response [200]>

	
body = None

	request body to send to the server.

	
deregister_hook(event, hook)

	Deregister a previously registered hook.
Returns True if the hook existed, False if not.

	
headers = None

	dictionary of HTTP headers.

	
hooks = None

	dictionary of callback hooks, for internal usage.

	
method = None

	HTTP verb to send to the server.

	
path_url

	Build the path URL to use.

	
prepare(method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None)[source]

	Prepares the entire request with the given parameters.

	
prepare_auth(auth, url='')[source]

	Prepares the given HTTP auth data.

	
prepare_body(data, files, json=None)[source]

	Prepares the given HTTP body data.

	
prepare_cookies(cookies)[source]

	Prepares the given HTTP cookie data.

This function eventually generates a Cookie header from the
given cookies using cookielib. Due to cookielib's design, the header
will not be regenerated if it already exists, meaning this function
can only be called once for the life of the
PreparedRequest object. Any subsequent calls
to prepare_cookies will have no actual effect, unless the "Cookie"
header is removed beforehand.

	
prepare_headers(headers)[source]

	Prepares the given HTTP headers.

	
prepare_hooks(hooks)[source]

	Prepares the given hooks.

	
prepare_method(method)[source]

	Prepares the given HTTP method.

	
prepare_url(url, params)[source]

	Prepares the given HTTP URL.

	
register_hook(event, hook)

	Properly register a hook.

	
url = None

	HTTP URL to send the request to.

	
class requests.adapters.HTTPAdapter(pool_connections=10, pool_maxsize=10, max_retries=0, pool_block=False)[source]

	The built-in HTTP Adapter for urllib3.

Provides a general-case interface for Requests sessions to contact HTTP and
HTTPS urls by implementing the Transport Adapter interface. This class will
usually be created by the Session class under the
covers.

	Parameters:	
	pool_connections -- The number of urllib3 connection pools to cache.

	pool_maxsize -- The maximum number of connections to save in the pool.

	max_retries -- The maximum number of retries each connection
should attempt. Note, this applies only to failed DNS lookups, socket
connections and connection timeouts, never to requests where data has
made it to the server. By default, Requests does not retry failed
connections. If you need granular control over the conditions under
which we retry a request, import urllib3's Retry class and pass
that instead.

	pool_block -- Whether the connection pool should block for connections.

Usage:

>>> import requests
>>> s = requests.Session()
>>> a = requests.adapters.HTTPAdapter(max_retries=3)
>>> s.mount('http://', a)

	
add_headers(request, **kwargs)[source]

	Add any headers needed by the connection. As of v2.0 this does
nothing by default, but is left for overriding by users that subclass
the HTTPAdapter.

This should not be called from user code, and is only exposed for use
when subclassing the
HTTPAdapter.

	Parameters:	
	request -- The PreparedRequest to add headers to.

	kwargs -- The keyword arguments from the call to send().

	
build_response(req, resp)[source]

	Builds a Response object from a urllib3
response. This should not be called from user code, and is only exposed
for use when subclassing the
HTTPAdapter

	Parameters:	
	req -- The PreparedRequest used to generate the response.

	resp -- The urllib3 response object.

	
cert_verify(conn, url, verify, cert)[source]

	Verify a SSL certificate. This method should not be called from user
code, and is only exposed for use when subclassing the
HTTPAdapter.

	Parameters:	
	conn -- The urllib3 connection object associated with the cert.

	url -- The requested URL.

	verify -- Whether we should actually verify the certificate.

	cert -- The SSL certificate to verify.

	
close()[source]

	Disposes of any internal state.

Currently, this closes the PoolManager and any active ProxyManager,
which closes any pooled connections.

	
get_connection(url, proxies=None)[source]

	Returns a urllib3 connection for the given URL. This should not be
called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

	Parameters:	
	url -- The URL to connect to.

	proxies -- (optional) A Requests-style dictionary of proxies used on this request.

	
init_poolmanager(connections, maxsize, block=False, **pool_kwargs)[source]

	Initializes a urllib3 PoolManager.

This method should not be called from user code, and is only
exposed for use when subclassing the
HTTPAdapter.

	Parameters:	
	connections -- The number of urllib3 connection pools to cache.

	maxsize -- The maximum number of connections to save in the pool.

	block -- Block when no free connections are available.

	pool_kwargs -- Extra keyword arguments used to initialize the Pool Manager.

	
proxy_headers(proxy)[source]

	Returns a dictionary of the headers to add to any request sent
through a proxy. This works with urllib3 magic to ensure that they are
correctly sent to the proxy, rather than in a tunnelled request if
CONNECT is being used.

This should not be called from user code, and is only exposed for use
when subclassing the
HTTPAdapter.

	Parameters:	proxies -- The url of the proxy being used for this request.

	
proxy_manager_for(proxy, **proxy_kwargs)[source]

	Return urllib3 ProxyManager for the given proxy.

This method should not be called from user code, and is only
exposed for use when subclassing the
HTTPAdapter.

	Parameters:	
	proxy -- The proxy to return a urllib3 ProxyManager for.

	proxy_kwargs -- Extra keyword arguments used to configure the Proxy Manager.

	Returns:	ProxyManager

	
request_url(request, proxies)[source]

	Obtain the url to use when making the final request.

If the message is being sent through a HTTP proxy, the full URL has to
be used. Otherwise, we should only use the path portion of the URL.

This should not be called from user code, and is only exposed for use
when subclassing the
HTTPAdapter.

	Parameters:	
	request -- The PreparedRequest being sent.

	proxies -- A dictionary of schemes or schemes and hosts to proxy URLs.

	
send(request, stream=False, timeout=None, verify=True, cert=None, proxies=None)[source]

	Sends PreparedRequest object. Returns Response object.

	Parameters:	
	request -- The PreparedRequest being sent.

	stream -- (optional) Whether to stream the request content.

	timeout (float or tuple) -- (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify -- (optional) Whether to verify SSL certificates.

	cert -- (optional) Any user-provided SSL certificate to be trusted.

	proxies -- (optional) The proxies dictionary to apply to the request.

Authentication

	
class requests.auth.AuthBase[source]

	Base class that all auth implementations derive from

	
class requests.auth.HTTPBasicAuth(username, password)[source]

	Attaches HTTP Basic Authentication to the given Request object.

	
class requests.auth.HTTPProxyAuth(username, password)[source]

	Attaches HTTP Proxy Authentication to a given Request object.

	
class requests.auth.HTTPDigestAuth(username, password)[source]

	Attaches HTTP Digest Authentication to the given Request object.

Encodings

	
requests.utils.get_encodings_from_content(content)[source]

	Returns encodings from given content string.

	Parameters:	content -- bytestring to extract encodings from.

	
requests.utils.get_encoding_from_headers(headers)[source]

	Returns encodings from given HTTP Header Dict.

	Parameters:	headers -- dictionary to extract encoding from.

	
requests.utils.get_unicode_from_response(r)[source]

	Returns the requested content back in unicode.

	Parameters:	r -- Response object to get unicode content from.

Tried:

	charset from content-type

	fall back and replace all unicode characters

Cookies

	
requests.utils.dict_from_cookiejar(cj)[source]

	Returns a key/value dictionary from a CookieJar.

	Parameters:	cj -- CookieJar object to extract cookies from.

	
requests.utils.cookiejar_from_dict(cookie_dict, cookiejar=None, overwrite=True)[source]

	Returns a CookieJar from a key/value dictionary.

	Parameters:	
	cookie_dict -- Dict of key/values to insert into CookieJar.

	cookiejar -- (optional) A cookiejar to add the cookies to.

	overwrite -- (optional) If False, will not replace cookies
already in the jar with new ones.

	
requests.utils.add_dict_to_cookiejar(cj, cookie_dict)[source]

	Returns a CookieJar from a key/value dictionary.

	Parameters:	
	cj -- CookieJar to insert cookies into.

	cookie_dict -- Dict of key/values to insert into CookieJar.

	
class requests.cookies.RequestsCookieJar(policy=None)[source]

	Compatibility class; is a cookielib.CookieJar, but exposes a dict
interface.

This is the CookieJar we create by default for requests and sessions that
don't specify one, since some clients may expect response.cookies and
session.cookies to support dict operations.

Requests does not use the dict interface internally; it's just for
compatibility with external client code. All requests code should work
out of the box with externally provided instances of CookieJar, e.g.
LWPCookieJar and FileCookieJar.

Unlike a regular CookieJar, this class is pickleable.

Warning

dictionary operations that are normally O(1) may be O(n).

	
add_cookie_header(request)

	Add correct Cookie: header to request (urllib2.Request object).

The Cookie2 header is also added unless policy.hide_cookie2 is true.

	
clear(domain=None, path=None, name=None)

	Clear some cookies.

Invoking this method without arguments will clear all cookies. If
given a single argument, only cookies belonging to that domain will be
removed. If given two arguments, cookies belonging to the specified
path within that domain are removed. If given three arguments, then
the cookie with the specified name, path and domain is removed.

Raises KeyError if no matching cookie exists.

	
clear_expired_cookies()

	Discard all expired cookies.

You probably don't need to call this method: expired cookies are never
sent back to the server (provided you're using DefaultCookiePolicy),
this method is called by CookieJar itself every so often, and the
.save() method won't save expired cookies anyway (unless you ask
otherwise by passing a true ignore_expires argument).

	
clear_session_cookies()

	Discard all session cookies.

Note that the .save() method won't save session cookies anyway, unless
you ask otherwise by passing a true ignore_discard argument.

	
copy()[source]

	Return a copy of this RequestsCookieJar.

	
extract_cookies(response, request)

	Extract cookies from response, where allowable given the request.

	
get(name, default=None, domain=None, path=None)[source]

	Dict-like get() that also supports optional domain and path args in
order to resolve naming collisions from using one cookie jar over
multiple domains.

Warning

operation is O(n), not O(1).

	
get_dict(domain=None, path=None)[source]

	Takes as an argument an optional domain and path and returns a plain
old Python dict of name-value pairs of cookies that meet the
requirements.

	
items()[source]

	Dict-like items() that returns a list of name-value tuples from the
jar. See keys() and values(). Allows client-code to call
dict(RequestsCookieJar) and get a vanilla python dict of key value
pairs.

	
iteritems()[source]

	Dict-like iteritems() that returns an iterator of name-value tuples
from the jar. See iterkeys() and itervalues().

	
iterkeys()[source]

	Dict-like iterkeys() that returns an iterator of names of cookies
from the jar. See itervalues() and iteritems().

	
itervalues()[source]

	Dict-like itervalues() that returns an iterator of values of cookies
from the jar. See iterkeys() and iteritems().

	
keys()[source]

	Dict-like keys() that returns a list of names of cookies from the
jar. See values() and items().

	
list_domains()[source]

	Utility method to list all the domains in the jar.

	
list_paths()[source]

	Utility method to list all the paths in the jar.

	
make_cookies(response, request)

	Return sequence of Cookie objects extracted from response object.

	
multiple_domains()[source]

	Returns True if there are multiple domains in the jar.
Returns False otherwise.

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
set(name, value, **kwargs)[source]

	Dict-like set() that also supports optional domain and path args in
order to resolve naming collisions from using one cookie jar over
multiple domains.

	
set_cookie_if_ok(cookie, request)

	Set a cookie if policy says it's OK to do so.

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
update(other)[source]

	Updates this jar with cookies from another CookieJar or dict-like

	
values()[source]

	Dict-like values() that returns a list of values of cookies from the
jar. See keys() and items().

	
class requests.cookies.CookieConflictError[source]

	There are two cookies that meet the criteria specified in the cookie jar.
Use .get and .set and include domain and path args in order to be more specific.

Status Code Lookup

	
requests.codes

	

>>> requests.codes['temporary_redirect']
307

>>> requests.codes.teapot
418

>>> requests.codes['\o/']
200

Migrating to 1.x

This section details the main differences between 0.x and 1.x and is meant
to ease the pain of upgrading.

API Changes

	Response.json is now a callable and not a property of a response.

import requests
r = requests.get('https://github.com/timeline.json')
r.json() # This *call* raises an exception if JSON decoding fails

	The Session API has changed. Sessions objects no longer take parameters.
Session is also now capitalized, but it can still be
instantiated with a lowercase session for backwards compatibility.

s = requests.Session() # formerly, session took parameters
s.auth = auth
s.headers.update(headers)
r = s.get('http://httpbin.org/headers')

	All request hooks have been removed except 'response'.

	Authentication helpers have been broken out into separate modules. See
requests-oauthlib [https://github.com/requests/requests-oauthlib] and requests-kerberos [https://github.com/requests/requests-kerberos].

	The parameter for streaming requests was changed from prefetch to
stream and the logic was inverted. In addition, stream is now
required for raw response reading.

in 0.x, passing prefetch=False would accomplish the same thing
r = requests.get('https://github.com/timeline.json', stream=True)
for chunk in r.iter_content(8192):
 ...

	The config parameter to the requests method has been removed. Some of
these options are now configured on a Session such as keep-alive and
maximum number of redirects. The verbosity option should be handled by
configuring logging.

import requests
import logging

Enabling debugging at http.client level (requests->urllib3->http.client)
you will see the REQUEST, including HEADERS and DATA, and RESPONSE with HEADERS but without DATA.
the only thing missing will be the response.body which is not logged.
try: # for Python 3
 from http.client import HTTPConnection
except ImportError:
 from httplib import HTTPConnection
HTTPConnection.debuglevel = 1

logging.basicConfig() # you need to initialize logging, otherwise you will not see anything from requests
logging.getLogger().setLevel(logging.DEBUG)
requests_log = logging.getLogger("requests.packages.urllib3")
requests_log.setLevel(logging.DEBUG)
requests_log.propagate = True

requests.get('http://httpbin.org/headers')

Licensing

One key difference that has nothing to do with the API is a change in the
license from the ISC [http://opensource.org/licenses/ISC] license to the Apache 2.0 [http://opensource.org/licenses/Apache-2.0] license. The Apache 2.0
license ensures that contributions to Requests are also covered by the Apache
2.0 license.

Migrating to 2.x

Compared with the 1.0 release, there were relatively few backwards
incompatible changes, but there are still a few issues to be aware of with
this major release.

For more details on the changes in this release including new APIs, links
to the relevant GitHub issues and some of the bug fixes, read Cory's blog [http://lukasa.co.uk/2013/09/Requests_20/]
on the subject.

API Changes

	There were a couple changes to how Requests handles exceptions.
RequestException is now a subclass of IOError rather than
RuntimeError as that more accurately categorizes the type of error.
In addition, an invalid URL escape sequence now raises a subclass of
RequestException rather than a ValueError.

requests.get('http://%zz/') # raises requests.exceptions.InvalidURL

Lastly, httplib.IncompleteRead exceptions caused by incorrect chunked
encoding will now raise a Requests ChunkedEncodingError instead.

	The proxy API has changed slightly. The scheme for a proxy URL is now
required.

proxies = {
 "http": "10.10.1.10:3128", # use http://10.10.1.10:3128 instead
}

In requests 1.x, this was legal, in requests 2.x,
this raises requests.exceptions.MissingSchema
requests.get("http://example.org", proxies=proxies)

Behavioural Changes

	Keys in the headers dictionary are now native strings on all Python
versions, i.e. bytestrings on Python 2 and unicode on Python 3. If the
keys are not native strings (unicode on Python2 or bytestrings on Python 3)
they will be converted to the native string type assuming UTF-8 encoding.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Contributor's Guide

If you're reading this, you're probably interested in contributing to Requests.
Thank you very much! Open source projects live-and-die based on the support
they receive from others, and the fact that you're even considering
contributing to the Requests project is very generous of you.

This document lays out guidelines and advice for contributing to this project.
If you're thinking of contributing, please start by reading this document and
getting a feel for how contributing to this project works. If you have any
questions, feel free to reach out to either Ian Cordasco [http://www.coglib.com/~icordasc/] or Cory Benfield [https://lukasa.co.uk/about],
the primary maintainers.

If you have non-technical feedback, philosophical ponderings, crazy ideas, or
other general thoughts about Requests or its position within the Python
ecosystem, the BDFL, Kenneth Reitz, would love to hear from you.

The guide is split into sections based on the type of contribution you're
thinking of making, with a section that covers general guidelines for all
contributors.

Be Cordial

Be cordial or be on your way. —Kenneth Reitz

Requests has one very important rule governing all forms of contribution,
including reporting bugs or requesting features. This golden rule is
"be cordial or be on your way [http://kennethreitz.org/be-cordial-or-be-on-your-way/]".

All contributions are welcome, as long as
everyone involved is treated with respect.

Get Early Feedback

If you are contributing, do not feel the need to sit on your contribution until
it is perfectly polished and complete. It helps everyone involved for you to
seek feedback as early as you possibly can. Submitting an early, unfinished
version of your contribution for feedback in no way prejudices your chances of
getting that contribution accepted, and can save you from putting a lot of work
into a contribution that is not suitable for the project.

Contribution Suitability

Our project maintainers have the last word on whether or not a contribution is
suitable for Requests. All contributions will be considered carefully, but from
time to time, contributions will be rejected because they do not suit the
current goals or needs of the project.

If your contribution is rejected, don't despair! As long as you followed these
guidelines, you will have a much better chance of getting your next
contribution accepted.

Code Contributions

Steps for Submitting Code

When contributing code, you'll want to follow this checklist:

	Fork the repository on GitHub.

	Run the tests to confirm they all pass on your system. If they don't, you'll
need to investigate why they fail. If you're unable to diagnose this
yourself, raise it as a bug report by following the guidelines in this
document: Bug Reports.

	Write tests that demonstrate your bug or feature. Ensure that they fail.

	Make your change.

	Run the entire test suite again, confirming that all tests pass including
the ones you just added.

	Send a GitHub Pull Request to the main repository's master branch.
GitHub Pull Requests are the expected method of code collaboration on this
project.

The following sub-sections go into more detail on some of the points above.

Code Review

Contributions will not be merged until they've been code reviewed. You should
implement any code review feedback unless you strongly object to it. In the
event that you object to the code review feedback, you should make your case
clearly and calmly. If, after doing so, the feedback is judged to still apply,
you must either apply the feedback or withdraw your contribution.

New Contributors

If you are new or relatively new to Open Source, welcome! Requests aims to
be a gentle introduction to the world of Open Source. If you're concerned about
how best to contribute, please consider mailing a maintainer (listed above) and
asking for help.

Please also check the Get Early Feedback section.

Kenneth Reitz's Code Style™

The Requests codebase uses the PEP 8 [http://pep8.org] code style.

In addition to the standards outlined in PEP 8, we have a few guidelines:

	Line-length can exceed 79 characters, to 100, when convenient.

	Line-length can exceed 100 characters, when doing otherwise would be terribly inconvenient.

	Always use single-quoted strings (e.g. '#flatearth'), unless a single-quote occurs within the string.

Additionally, one of the styles that PEP8 recommends for line continuations [https://www.python.org/dev/peps/pep-0008/#indentation]
completely lacks all sense of taste, and is not to be permitted within
the Requests codebase:

Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
 var_three, var_four)

No. Just don't. Please.

Docstrings are to follow the following syntaxes:

def the_earth_is_flat():
 """NASA divided up the seas into thirty-three degrees."""
 pass

def fibonacci_spiral_tool():
 """With my feet upon the ground I lose myself / between the sounds
 and open wide to suck it in. / I feel it move across my skin. / I'm
 reaching up and reaching out. / I'm reaching for the random or
 whatever will bewilder me. / Whatever will bewilder me. / And
 following our will and wind we may just go where no one's been. /
 We'll ride the spiral to the end and may just go where no one's
 been.

 Spiral out. Keep going...
 """
 pass

All functions, methods, and classes are to contain docstrings. Object data
model methods (e.g. __repr__) are typically the exception to this rule.

Thanks for helping to make the world a better place!

Documentation Contributions

Documentation improvements are always welcome! The documentation files live in
the docs/ directory of the codebase. They're written in
reStructuredText [http://docutils.sourceforge.net/rst.html], and use Sphinx [http://sphinx-doc.org/index.html] to generate the full suite of
documentation.

When contributing documentation, please do your best to follow the style of the
documentation files. This means a soft-limit of 79 characters wide in your text
files and a semi-formal, yet friendly and approachable, prose style.

When presenting Python code, use single-quoted strings ('hello' instead of
"hello").

Bug Reports

Bug reports are hugely important! Before you raise one, though, please check
through the GitHub issues [https://github.com/kennethreitz/requests/issues], both open and closed, to confirm that the bug
hasn't been reported before. Duplicate bug reports are a huge drain on the time
of other contributors, and should be avoided as much as possible.

Feature Requests

Requests is in a perpetual feature freeze, only the BDFL can add or approve of
new features. The maintainers believe that Requests is a feature-complete
piece of software at this time.

One of the most important skills to have while maintaining a largely-used
open source project is learning the ability to say "no" to suggested changes,
while keeping an open ear and mind.

If you believe there is a feature missing, feel free to raise a feature
request, but please do be aware that the overwhelming likelihood is that your
feature request will not be accepted.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

Development Philosophy

Requests is an open but opinionated library, created by an open but opinionated developer.

Management Style

Kenneth Reitz [http://kennethreitz.org] is the BDFL. He has final say in any decision related to the Requests project. Kenneth is responsible for the direction and form of the library. In addition to making decisions based on technical merit, he is responsible for making decisions based on the development philosophy of Requests. Only Kenneth may merge code into Requests.

Ian Cordasco [http://www.coglib.com/~icordasc/] and Cory Benfield [https://lukasa.co.uk/about/] are the core contributors. They are responsible for triaging bug reports, reviewing pull requests and ensuring that Kenneth is kept up to speed with developments around the library. The day-to-day managing of the project is done by the core contributors. They are responsible for making judgements about whether or not a feature request is likely to be accepted by Kenneth. They do not have the authority to change code or merge code changes, though they may change documentation. Their word is not final.

Values

	Simplicity is always better than functionality.

	Listen to everyone, then disregard it.

	The API is all that matters. Everything else is secondary.

	Fit the 90% use-case. Ignore the nay-sayers.

Semantic Versioning

For many years, the open source community has been plagued with version number dystonia. Numbers vary so greatly from project to project, they are practically meaningless.

Requests uses Semantic Versioning [http://semver.org]. This specification seeks to put an end to this madness with a small set of practical guidelines for you and your colleagues to use in your next project.

Standard Library?

Requests has no active plans to be included in the standard library. This decision has been discussed at length with Guido as well as numerous core developers.

Essentially, the standard library is where a library goes to die. It is appropriate for a module to be included when active development is no longer necessary.

Linux Distro Packages

Distributions have been made for many Linux repositories, including: Ubuntu, Debian, RHEL, and Arch.

These distributions are sometimes divergent forks, or are otherwise not kept up-to-date with the latest code and bugfixes. PyPI (and its mirrors) and GitHub are the official distribution sources; alternatives are not supported by the Requests project.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Requests 2.10.0 documentation

How to Help

Requests is under active development, and contributions are more than welcome!

	Check for open issues or open a fresh issue to start a discussion around a bug.
There is a Contributor Friendly tag for issues that should be ideal for people who are not very
familiar with the codebase yet.

	Fork the repository [https://github.com/kennethreitz/requests] on GitHub and start making your
changes to a new branch.

	Write a test which shows that the bug was fixed.

	Send a pull request and bug the maintainer until it gets merged and published. :)
Make sure to add yourself to AUTHORS [https://github.com/kennethreitz/requests/blob/master/AUTHORS.rst].

Feature Freeze

As of v1.0.0, Requests has now entered a feature freeze. Requests for new
features and Pull Requests implementing those features will not be accepted.

Development Dependencies

You'll need to install py.test in order to run the Requests' test suite:

$ pip install -r requirements.txt
$ py.test
platform darwin -- Python 2.7.3 -- pytest-2.3.4
collected 25 items

test_requests.py
25 passed in 3.50 seconds

Runtime Environments

Requests currently supports the following versions of Python:

	Python 2.6

	Python 2.7

	Python 3.1

	Python 3.2

	Python 3.3

	PyPy 1.9

Support for Python 3.1 and 3.2 may be dropped at any time.

Google AppEngine is not officially supported although support is available
with the Requests-Toolbelt [http://toolbelt.readthedocs.io/].

Are you crazy?

	SPDY support would be awesome. No C extensions.

Downstream Repackaging

If you are repackaging Requests, please note that you must also redistribute the cacerts.pem file in order to get correct SSL functionality.

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Requests 2.10.0 documentation

Authors

Requests is written and maintained by Kenneth Reitz and
various contributors:

Keepers of the Three Crystals

	Kenneth Reitz <me@kennethreitz.org> @kennethreitz [https://github.com/kennethreitz], Keeper of the Master Crystal.

	Cory Benfield <cory@lukasa.co.uk> @lukasa [https://github.com/lukasa]

	Ian Cordasco <graffatcolmingov@gmail.com> @sigmavirus24 [https://github.com/sigmavirus24]

Urllib3

	Andrey Petrov <andrey.petrov@shazow.net>

Patches and Suggestions

	Various Pocoo Members

	Chris Adams

	Flavio Percoco Premoli

	Dj Gilcrease

	Justin Murphy

	Rob Madole

	Aram Dulyan

	Johannes Gorset

	村山めがね (Megane Murayama)

	James Rowe

	Daniel Schauenberg

	Zbigniew Siciarz

	Daniele Tricoli 'Eriol'

	Richard Boulton

	Miguel Olivares <miguel@moliware.com>

	Alberto Paro

	Jérémy Bethmont

	潘旭 (Xu Pan)

	Tamás Gulácsi

	Rubén Abad

	Peter Manser

	Jeremy Selier

	Jens Diemer

	Alex (@alopatin [https://github.com/alopatin])

	Tom Hogans <tomhsx@gmail.com>

	Armin Ronacher

	Shrikant Sharat Kandula

	Mikko Ohtamaa

	Den Shabalin

	Daniel Miller <danielm@vs-networks.com>

	Alejandro Giacometti

	Rick Mak

	Johan Bergström

	Josselin Jacquard

	Travis N. Vaught

	Fredrik Möllerstrand

	Daniel Hengeveld

	Dan Head

	Bruno Renié

	David Fischer

	Joseph McCullough

	Juergen Brendel

	Juan Riaza

	Ryan Kelly

	Rolando Espinoza La fuente

	Robert Gieseke

	Idan Gazit

	Ed Summers

	Chris Van Horne

	Christopher Davis

	Ori Livneh

	Jason Emerick

	Bryan Helmig

	Jonas Obrist

	Lucian Ursu

	Tom Moertel

	Frank Kumro Jr

	Chase Sterling

	Marty Alchin

	takluyver

	Ben Toews (@mastahyeti [https://github.com/mastahyeti])

	David Kemp

	Brendon Crawford

	Denis (@Telofy [https://github.com/Telofy])

	Matt Giuca

	Adam Tauber

	Honza Javorek

	Brendan Maguire <maguire.brendan@gmail.com>

	Chris Dary

	Danver Braganza <danverbraganza@gmail.com>

	Max Countryman

	Nick Chadwick

	Jonathan Drosdeck

	Jiri Machalek

	Steve Pulec

	Michael Kelly

	Michael Newman <newmaniese@gmail.com>

	Jonty Wareing <jonty@jonty.co.uk>

	Shivaram Lingamneni

	Miguel Turner

	Rohan Jain (@crodjer [https://github.com/crodjer])

	Justin Barber <barber.justin@gmail.com>

	Roman Haritonov (@reclosedev [https://github.com/reclosedev])

	Josh Imhoff <joshimhoff13@gmail.com>

	Arup Malakar <amalakar@gmail.com>

	Danilo Bargen (@dbrgn [https://github.com/dbrgn])

	Torsten Landschoff

	Michael Holler (@apotheos [https://github.com/apotheos])

	Timnit Gebru

	Sarah Gonzalez

	Victoria Mo

	Leila Muhtasib

	Matthias Rahlf <matthias@webding.de>

	Jakub Roztocil <jakub@roztocil.name>

	Rhys Elsmore

	André Graf (@dergraf [https://github.com/dergraf])

	Stephen Zhuang (@everbird [https://github.com/everbird])

	Martijn Pieters

	Jonatan Heyman

	David Bonner <dbonner@gmail.com> (@rascalking [https://github.com/rascalking])

	Vinod Chandru

	Johnny Goodnow <j.goodnow29@gmail.com>

	Denis Ryzhkov <denisr@denisr.com>

	Wilfred Hughes <me@wilfred.me.uk>

	Dmitry Medvinsky <me@dmedvinsky.name>

	Bryce Boe <bbzbryce@gmail.com> (@bboe [https://github.com/bboe])

	Colin Dunklau <colin.dunklau@gmail.com> (@cdunklau [https://github.com/cdunklau])

	Bob Carroll <bob.carroll@alum.rit.edu> (@rcarz [https://github.com/rcarz])

	Hugo Osvaldo Barrera <hugo@osvaldobarrera.com.ar> (@hobarrera [https://github.com/hobarrera])

	Łukasz Langa <lukasz@langa.pl>

	Dave Shawley <daveshawley@gmail.com>

	James Clarke (@jam [https://github.com/jam])

	Kevin Burke <kev@inburke.com>

	Flavio Curella

	David Pursehouse <david.pursehouse@gmail.com> (@dpursehouse [https://github.com/dpursehouse])

	Jon Parise (@jparise [https://github.com/jparise])

	Alexander Karpinsky (@homm86 [https://twitter.com/homm86])

	Marc Schlaich (@schlamar [https://github.com/schlamar])

	Park Ilsu <daftonshady@gmail.com> (@daftshady [https://github.com/daftshady])

	Matt Spitz (@mattspitz [https://github.com/mattspitz])

	Vikram Oberoi (@voberoi [https://github.com/voberoi])

	Can Ibanoglu <can.ibanoglu@gmail.com> (@canibanoglu [https://github.com/canibanoglu])

	Thomas Weißschuh <thomas@t-8ch.de> (@t-8ch [https://github.com/t-8ch])

	Jayson Vantuyl <jayson@aggressive.ly>

	Pengfei.X <pengphy@gmail.com>

	Kamil Madac <kamil.madac@gmail.com>

	Michael Becker <mike@beckerfuffle.com> (@beckerfuffle [https://twitter.com/beckerfuffle])

	Erik Wickstrom <erik@erikwickstrom.com> (@erikwickstrom [https://github.com/erikwickstrom])

	Константин Подшумок (@podshumok [https://github.com/podshumok])

	Ben Bass (@codedstructure [https://github.com/codedstructure])

	Jonathan Wong <evolutionace@gmail.com> (@ContinuousFunction [https://github.com/ContinuousFunction])

	Martin Jul (@mjul [https://github.com/mjul])

	Joe Alcorn (@buttscicles [https://github.com/buttscicles])

	Syed Suhail Ahmed <ssuhail.ahmed93@gmail.com> (@syedsuhail [https://github.com/syedsuhail])

	Scott Sadler (@ssadler [https://github.com/ssadler])

	Arthur Darcet (@arthurdarcet [https://github.com/arthurdarcet])

	Ulrich Petri (@ulope [https://github.com/ulope])

	Muhammad Yasoob Ullah Khalid <yasoob.khld@gmail.com> (@yasoob [https://github.com/yasoob])

	Paul van der Linden (@pvanderlinden [https://github.com/pvanderlinden])

	Colin Dickson (@colindickson [https://github.com/colindickson])

	Smiley Barry (@smiley [https://github.com/smiley])

	Shagun Sodhani (@shagunsodhani [https://github.com/shagunsodhani])

	Robin Linderborg (@vienno [https://github.com/vienno])

	Brian Samek (@bsamek [https://github.com/bsamek])

	Dmitry Dygalo (@Stranger6667 [https://github.com/Stranger6667])

	piotrjurkiewicz

	Jesse Shapiro <jesse@jesseshapiro.net> (@haikuginger [https://github.com/haikuginger])

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	Requests 2.10.0 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 requests	

 	
 	
 requests.models	

 Copyright 2016. A Kenneth Reitz Project.

 Navigation

 	
 index

 	
 modules |

 	Requests 2.10.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	add_cookie_header() (requests.cookies.RequestsCookieJar method)

 	add_dict_to_cookiejar() (in module requests.utils)

 	add_headers() (requests.adapters.HTTPAdapter method)

 	

 	apparent_encoding (requests.Response attribute)

 	auth (requests.Session attribute)

 	AuthBase (class in requests.auth)

B

 	

 	body (requests.PreparedRequest attribute)

 	

 	build_response() (requests.adapters.HTTPAdapter method)

C

 	

 	cert (requests.Session attribute)

 	cert_verify() (requests.adapters.HTTPAdapter method)

 	clear() (requests.cookies.RequestsCookieJar method)

 	clear_expired_cookies() (requests.cookies.RequestsCookieJar method)

 	clear_session_cookies() (requests.cookies.RequestsCookieJar method)

 	close() (requests.adapters.HTTPAdapter method)

 	

 	(requests.Response method)

 	(requests.Session method)

 	codes (in module requests)

 	

 	ConnectionError

 	ConnectTimeout

 	content (requests.Response attribute)

 	CookieConflictError (class in requests.cookies)

 	cookiejar_from_dict() (in module requests.utils)

 	cookies (requests.Response attribute)

 	

 	(requests.Session attribute)

 	copy() (requests.cookies.RequestsCookieJar method)

D

 	

 	delete() (in module requests)

 	

 	(requests.Session method)

 	deregister_hook() (requests.PreparedRequest method)

 	

 	(requests.Request method)

 	

 	dict_from_cookiejar() (in module requests.utils)

E

 	

 	elapsed (requests.Response attribute)

 	encoding (requests.Response attribute)

 	

 	extract_cookies() (requests.cookies.RequestsCookieJar method)

G

 	

 	get() (in module requests)

 	

 	(requests.Session method)

 	(requests.cookies.RequestsCookieJar method)

 	get_adapter() (requests.Session method)

 	get_connection() (requests.adapters.HTTPAdapter method)

 	get_dict() (requests.cookies.RequestsCookieJar method)

 	

 	get_encoding_from_headers() (in module requests.utils)

 	get_encodings_from_content() (in module requests.utils)

 	get_unicode_from_response() (in module requests.utils)

H

 	

 	head() (in module requests)

 	

 	(requests.Session method)

 	headers (requests.PreparedRequest attribute)

 	

 	(requests.Response attribute)

 	(requests.Session attribute)

 	history (requests.Response attribute)

 	hooks (requests.PreparedRequest attribute)

 	

 	(requests.Session attribute)

 	HTTPAdapter (class in requests.adapters)

 	

 	HTTPBasicAuth (class in requests.auth)

 	HTTPDigestAuth (class in requests.auth)

 	HTTPError

 	HTTPProxyAuth (class in requests.auth)

I

 	

 	init_poolmanager() (requests.adapters.HTTPAdapter method)

 	is_permanent_redirect (requests.Response attribute)

 	is_redirect (requests.Response attribute)

 	items() (requests.cookies.RequestsCookieJar method)

 	iter_content() (requests.Response method)

 	

 	iter_lines() (requests.Response method)

 	iteritems() (requests.cookies.RequestsCookieJar method)

 	iterkeys() (requests.cookies.RequestsCookieJar method)

 	itervalues() (requests.cookies.RequestsCookieJar method)

J

 	

 	json() (requests.Response method)

K

 	

 	keys() (requests.cookies.RequestsCookieJar method)

L

 	

 	links (requests.Response attribute)

 	list_domains() (requests.cookies.RequestsCookieJar method)

 	

 	list_paths() (requests.cookies.RequestsCookieJar method)

M

 	

 	make_cookies() (requests.cookies.RequestsCookieJar method)

 	max_redirects (requests.Session attribute)

 	merge_environment_settings() (requests.Session method)

 	

 	method (requests.PreparedRequest attribute)

 	mount() (requests.Session method)

 	multiple_domains() (requests.cookies.RequestsCookieJar method)

O

 	

 	options() (requests.Session method)

P

 	

 	params (requests.Session attribute)

 	patch() (in module requests)

 	

 	(requests.Session method)

 	path_url (requests.PreparedRequest attribute)

 	pop() (requests.cookies.RequestsCookieJar method)

 	popitem() (requests.cookies.RequestsCookieJar method)

 	post() (in module requests)

 	

 	(requests.Session method)

 	prepare() (requests.PreparedRequest method)

 	

 	(requests.Request method)

 	prepare_auth() (requests.PreparedRequest method)

 	prepare_body() (requests.PreparedRequest method)

 	prepare_cookies() (requests.PreparedRequest method)

 	prepare_headers() (requests.PreparedRequest method)

 	

 	prepare_hooks() (requests.PreparedRequest method)

 	prepare_method() (requests.PreparedRequest method)

 	prepare_request() (requests.Session method)

 	prepare_url() (requests.PreparedRequest method)

 	PreparedRequest (class in requests)

 	proxies (requests.Session attribute)

 	proxy_headers() (requests.adapters.HTTPAdapter method)

 	proxy_manager_for() (requests.adapters.HTTPAdapter method)

 	put() (in module requests)

 	

 	(requests.Session method)

 	
 Python Enhancement Proposals

 	

 	PEP 20

R

 	

 	raise_for_status() (requests.Response method)

 	raw (requests.Response attribute)

 	ReadTimeout

 	reason (requests.Response attribute)

 	rebuild_auth() (requests.Session method)

 	rebuild_method() (requests.Session method)

 	rebuild_proxies() (requests.Session method)

 	register_hook() (requests.PreparedRequest method)

 	

 	(requests.Request method)

 	Request (class in requests)

 	

 	request (requests.Response attribute)

 	request() (in module requests)

 	

 	(requests.Session method)

 	request_url() (requests.adapters.HTTPAdapter method)

 	RequestException

 	requests (module)

 	requests.models (module)

 	RequestsCookieJar (class in requests.cookies)

 	resolve_redirects() (requests.Session method)

 	Response (class in requests)

S

 	

 	send() (requests.adapters.HTTPAdapter method)

 	

 	(requests.Session method)

 	Session (class in requests)

 	set() (requests.cookies.RequestsCookieJar method)

 	set_cookie_if_ok() (requests.cookies.RequestsCookieJar method)

 	

 	setdefault() (requests.cookies.RequestsCookieJar method)

 	status_code (requests.Response attribute)

 	stream (requests.Session attribute)

T

 	

 	text (requests.Response attribute)

 	Timeout

 	

 	TooManyRedirects

 	trust_env (requests.Session attribute)

U

 	

 	update() (requests.cookies.RequestsCookieJar method)

 	url (requests.PreparedRequest attribute)

 	

 	(requests.Response attribute)

 	

 	URLRequired

V

 	

 	values() (requests.cookies.RequestsCookieJar method)

 	

 	verify (requests.Session attribute)

 Copyright 2016. A Kenneth Reitz Project.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 All modules for which code is available

		_abcoll

		cookielib

		requests.adapters

		requests.api

		requests.auth

		requests.cookies

		requests.exceptions

		requests.models

		requests.sessions

		requests.structures

		requests.utils

 © Copyright 2016. A Kenneth Reitz Project.

_modules/requests/auth.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 		Module code »

 Source code for requests.auth

-*- coding: utf-8 -*-

"""
requests.auth
~~~~~~~~~~~~~

This module contains the authentication handlers for Requests.
"""

import os
import re
import time
import hashlib
import threading

from base64 import b64encode

from .compat import urlparse, str
from .cookies import extract_cookies_to_jar
from .utils import parse_dict_header, to_native_string
from .status_codes import codes

CONTENT_TYPE_FORM_URLENCODED = 'application/x-www-form-urlencoded'
CONTENT_TYPE_MULTI_PART = 'multipart/form-data'


def _basic_auth_str(username, password):
    """Returns a Basic Auth string."""

    authstr = 'Basic ' + to_native_string(
        b64encode(('%s:%s' % (username, password)).encode('latin1')).strip()
    )

    return authstr


[docs]class AuthBase(object):
    """Base class that all auth implementations derive from"""

    def __call__(self, r):
        raise NotImplementedError('Auth hooks must be callable.')



[docs]class HTTPBasicAuth(AuthBase):
    """Attaches HTTP Basic Authentication to the given Request object."""
    def __init__(self, username, password):
        self.username = username
        self.password = password

    def __eq__(self, other):
        return all([
            self.username == getattr(other, 'username', None),
            self.password == getattr(other, 'password', None)
        ])

    def __ne__(self, other):
        return not self == other

    def __call__(self, r):
        r.headers['Authorization'] = _basic_auth_str(self.username, self.password)
        return r



[docs]class HTTPProxyAuth(HTTPBasicAuth):
    """Attaches HTTP Proxy Authentication to a given Request object."""
    def __call__(self, r):
        r.headers['Proxy-Authorization'] = _basic_auth_str(self.username, self.password)
        return r



[docs]class HTTPDigestAuth(AuthBase):
    """Attaches HTTP Digest Authentication to the given Request object."""
    def __init__(self, username, password):
        self.username = username
        self.password = password
        # Keep state in per-thread local storage
        self._thread_local = threading.local()

    def init_per_thread_state(self):
        # Ensure state is initialized just once per-thread
        if not hasattr(self._thread_local, 'init'):
            self._thread_local.init = True
            self._thread_local.last_nonce = ''
            self._thread_local.nonce_count = 0
            self._thread_local.chal = {}
            self._thread_local.pos = None
            self._thread_local.num_401_calls = None

    def build_digest_header(self, method, url):

        realm = self._thread_local.chal['realm']
        nonce = self._thread_local.chal['nonce']
        qop = self._thread_local.chal.get('qop')
        algorithm = self._thread_local.chal.get('algorithm')
        opaque = self._thread_local.chal.get('opaque')
        hash_utf8 = None

        if algorithm is None:
            _algorithm = 'MD5'
        else:
            _algorithm = algorithm.upper()
        # lambdas assume digest modules are imported at the top level
        if _algorithm == 'MD5' or _algorithm == 'MD5-SESS':
            def md5_utf8(x):
                if isinstance(x, str):
                    x = x.encode('utf-8')
                return hashlib.md5(x).hexdigest()
            hash_utf8 = md5_utf8
        elif _algorithm == 'SHA':
            def sha_utf8(x):
                if isinstance(x, str):
                    x = x.encode('utf-8')
                return hashlib.sha1(x).hexdigest()
            hash_utf8 = sha_utf8

        KD = lambda s, d: hash_utf8("%s:%s" % (s, d))

        if hash_utf8 is None:
            return None

        # XXX not implemented yet
        entdig = None
        p_parsed = urlparse(url)
        #: path is request-uri defined in RFC 2616 which should not be empty
        path = p_parsed.path or "/"
        if p_parsed.query:
            path += '?' + p_parsed.query

        A1 = '%s:%s:%s' % (self.username, realm, self.password)
        A2 = '%s:%s' % (method, path)

        HA1 = hash_utf8(A1)
        HA2 = hash_utf8(A2)

        if nonce == self._thread_local.last_nonce:
            self._thread_local.nonce_count += 1
        else:
            self._thread_local.nonce_count = 1
        ncvalue = '%08x' % self._thread_local.nonce_count
        s = str(self._thread_local.nonce_count).encode('utf-8')
        s += nonce.encode('utf-8')
        s += time.ctime().encode('utf-8')
        s += os.urandom(8)

        cnonce = (hashlib.sha1(s).hexdigest()[:16])
        if _algorithm == 'MD5-SESS':
            HA1 = hash_utf8('%s:%s:%s' % (HA1, nonce, cnonce))

        if not qop:
            respdig = KD(HA1, "%s:%s" % (nonce, HA2))
        elif qop == 'auth' or 'auth' in qop.split(','):
            noncebit = "%s:%s:%s:%s:%s" % (
                nonce, ncvalue, cnonce, 'auth', HA2
                )
            respdig = KD(HA1, noncebit)
        else:
            # XXX handle auth-int.
            return None

        self._thread_local.last_nonce = nonce

        # XXX should the partial digests be encoded too?
        base = 'username="%s", realm="%s", nonce="%s", uri="%s", ' \
               'response="%s"' % (self.username, realm, nonce, path, respdig)
        if opaque:
            base += ', opaque="%s"' % opaque
        if algorithm:
            base += ', algorithm="%s"' % algorithm
        if entdig:
            base += ', digest="%s"' % entdig
        if qop:
            base += ', qop="auth", nc=%s, cnonce="%s"' % (ncvalue, cnonce)

        return 'Digest %s' % (base)

    def handle_redirect(self, r, **kwargs):
        """Reset num_401_calls counter on redirects."""
        if r.is_redirect:
            self._thread_local.num_401_calls = 1

    def handle_401(self, r, **kwargs):
        """Takes the given response and tries digest-auth, if needed."""

        if self._thread_local.pos is not None:
            # Rewind the file position indicator of the body to where
            # it was to resend the request.
            r.request.body.seek(self._thread_local.pos)
        s_auth = r.headers.get('www-authenticate', '')

        if 'digest' in s_auth.lower() and self._thread_local.num_401_calls < 2:

            self._thread_local.num_401_calls += 1
            pat = re.compile(r'digest ', flags=re.IGNORECASE)
            self._thread_local.chal = parse_dict_header(pat.sub('', s_auth, count=1))

            # Consume content and release the original connection
            # to allow our new request to reuse the same one.
            r.content
            r.close()
            prep = r.request.copy()
            extract_cookies_to_jar(prep._cookies, r.request, r.raw)
            prep.prepare_cookies(prep._cookies)

            prep.headers['Authorization'] = self.build_digest_header(
                prep.method, prep.url)
            _r = r.connection.send(prep, **kwargs)
            _r.history.append(r)
            _r.request = prep

            return _r

        self._thread_local.num_401_calls = 1
        return r

    def __call__(self, r):
        # Initialize per-thread state, if needed
        self.init_per_thread_state()
        # If we have a saved nonce, skip the 401
        if self._thread_local.last_nonce:
            r.headers['Authorization'] = self.build_digest_header(r.method, r.url)
        try:
            self._thread_local.pos = r.body.tell()
        except AttributeError:
            # In the case of HTTPDigestAuth being reused and the body of
            # the previous request was a file-like object, pos has the
            # file position of the previous body. Ensure it's set to
            # None.
            self._thread_local.pos = None
        r.register_hook('response', self.handle_401)
        r.register_hook('response', self.handle_redirect)
        self._thread_local.num_401_calls = 1

        return r

    def __eq__(self, other):
        return all([
            self.username == getattr(other, 'username', None),
            self.password == getattr(other, 'password', None)
        ])

    def __ne__(self, other):
        return not self == other






          

      

      

    


    
        © Copyright 2016. A <a href="http://kennethreitz.com/pages/open-projects.html">Kenneth Reitz</a> Project.
    

  

_static/down.png





_modules/requests/sessions.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Requests 2.10.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for requests.sessions

# -*- coding: utf-8 -*-

"""
requests.session
~~~~~~~~~~~~~~~~

This module provides a Session object to manage and persist settings across
requests (cookies, auth, proxies).

"""
import os
from collections import Mapping
from datetime import datetime

from .auth import _basic_auth_str
from .compat import cookielib, OrderedDict, urljoin, urlparse
from .cookies import (
 cookiejar_from_dict, extract_cookies_to_jar, RequestsCookieJar, merge_cookies)
from .models import Request, PreparedRequest, DEFAULT_REDIRECT_LIMIT
from .hooks import default_hooks, dispatch_hook
from .utils import to_key_val_list, default_headers, to_native_string
from .exceptions import (
 TooManyRedirects, InvalidSchema, ChunkedEncodingError, ContentDecodingError)
from .packages.urllib3._collections import RecentlyUsedContainer
from .structures import CaseInsensitiveDict

from .adapters import HTTPAdapter

from .utils import (
 requote_uri, get_environ_proxies, get_netrc_auth, should_bypass_proxies,
 get_auth_from_url
)

from .status_codes import codes

formerly defined here, reexposed here for backward compatibility
from .models import REDIRECT_STATI

REDIRECT_CACHE_SIZE = 1000

def merge_setting(request_setting, session_setting, dict_class=OrderedDict):
 """
 Determines appropriate setting for a given request, taking into account the
 explicit setting on that request, and the setting in the session. If a
 setting is a dictionary, they will be merged together using `dict_class`
 """

 if session_setting is None:
 return request_setting

 if request_setting is None:
 return session_setting

 # Bypass if not a dictionary (e.g. verify)
 if not (
 isinstance(session_setting, Mapping) and
 isinstance(request_setting, Mapping)
):
 return request_setting

 merged_setting = dict_class(to_key_val_list(session_setting))
 merged_setting.update(to_key_val_list(request_setting))

 # Remove keys that are set to None. Extract keys first to avoid altering
 # the dictionary during iteration.
 none_keys = [k for (k, v) in merged_setting.items() if v is None]
 for key in none_keys:
 del merged_setting[key]

 return merged_setting

def merge_hooks(request_hooks, session_hooks, dict_class=OrderedDict):
 """
 Properly merges both requests and session hooks.

 This is necessary because when request_hooks == {'response': []}, the
 merge breaks Session hooks entirely.
 """
 if session_hooks is None or session_hooks.get('response') == []:
 return request_hooks

 if request_hooks is None or request_hooks.get('response') == []:
 return session_hooks

 return merge_setting(request_hooks, session_hooks, dict_class)

class SessionRedirectMixin(object):
 def resolve_redirects(self, resp, req, stream=False, timeout=None,
 verify=True, cert=None, proxies=None, **adapter_kwargs):
 """Receives a Response. Returns a generator of Responses."""

 i = 0
 hist = [] # keep track of history

 while resp.is_redirect:
 prepared_request = req.copy()

 if i > 0:
 # Update history and keep track of redirects.
 hist.append(resp)
 new_hist = list(hist)
 resp.history = new_hist

 try:
 resp.content # Consume socket so it can be released
 except (ChunkedEncodingError, ContentDecodingError, RuntimeError):
 resp.raw.read(decode_content=False)

 if i >= self.max_redirects:
 raise TooManyRedirects('Exceeded %s redirects.' % self.max_redirects, response=resp)

 # Release the connection back into the pool.
 resp.close()

 url = resp.headers['location']

 # Handle redirection without scheme (see: RFC 1808 Section 4)
 if url.startswith('//'):
 parsed_rurl = urlparse(resp.url)
 url = '%s:%s' % (parsed_rurl.scheme, url)

 # The scheme should be lower case...
 parsed = urlparse(url)
 url = parsed.geturl()

 # Facilitate relative 'location' headers, as allowed by RFC 7231.
 # (e.g. '/path/to/resource' instead of 'http://domain.tld/path/to/resource')
 # Compliant with RFC3986, we percent encode the url.
 if not parsed.netloc:
 url = urljoin(resp.url, requote_uri(url))
 else:
 url = requote_uri(url)

 prepared_request.url = to_native_string(url)
 # Cache the url, unless it redirects to itself.
 if resp.is_permanent_redirect and req.url != prepared_request.url:
 self.redirect_cache[req.url] = prepared_request.url

 self.rebuild_method(prepared_request, resp)

 # https://github.com/kennethreitz/requests/issues/1084
 if resp.status_code not in (codes.temporary_redirect, codes.permanent_redirect):
 if 'Content-Length' in prepared_request.headers:
 del prepared_request.headers['Content-Length']

 prepared_request.body = None

 headers = prepared_request.headers
 try:
 del headers['Cookie']
 except KeyError:
 pass

 # Extract any cookies sent on the response to the cookiejar
 # in the new request. Because we've mutated our copied prepared
 # request, use the old one that we haven't yet touched.
 extract_cookies_to_jar(prepared_request._cookies, req, resp.raw)
 prepared_request._cookies.update(self.cookies)
 prepared_request.prepare_cookies(prepared_request._cookies)

 # Rebuild auth and proxy information.
 proxies = self.rebuild_proxies(prepared_request, proxies)
 self.rebuild_auth(prepared_request, resp)

 # Override the original request.
 req = prepared_request

 resp = self.send(
 req,
 stream=stream,
 timeout=timeout,
 verify=verify,
 cert=cert,
 proxies=proxies,
 allow_redirects=False,
 **adapter_kwargs
)

 extract_cookies_to_jar(self.cookies, prepared_request, resp.raw)

 i += 1
 yield resp

 def rebuild_auth(self, prepared_request, response):
 """
 When being redirected we may want to strip authentication from the
 request to avoid leaking credentials. This method intelligently removes
 and reapplies authentication where possible to avoid credential loss.
 """
 headers = prepared_request.headers
 url = prepared_request.url

 if 'Authorization' in headers:
 # If we get redirected to a new host, we should strip out any
 # authentication headers.
 original_parsed = urlparse(response.request.url)
 redirect_parsed = urlparse(url)

 if (original_parsed.hostname != redirect_parsed.hostname):
 del headers['Authorization']

 # .netrc might have more auth for us on our new host.
 new_auth = get_netrc_auth(url) if self.trust_env else None
 if new_auth is not None:
 prepared_request.prepare_auth(new_auth)

 return

 def rebuild_proxies(self, prepared_request, proxies):
 """
 This method re-evaluates the proxy configuration by considering the
 environment variables. If we are redirected to a URL covered by
 NO_PROXY, we strip the proxy configuration. Otherwise, we set missing
 proxy keys for this URL (in case they were stripped by a previous
 redirect).

 This method also replaces the Proxy-Authorization header where
 necessary.
 """
 headers = prepared_request.headers
 url = prepared_request.url
 scheme = urlparse(url).scheme
 new_proxies = proxies.copy() if proxies is not None else {}

 if self.trust_env and not should_bypass_proxies(url):
 environ_proxies = get_environ_proxies(url)

 proxy = environ_proxies.get('all', environ_proxies.get(scheme))

 if proxy:
 new_proxies.setdefault(scheme, proxy)

 if 'Proxy-Authorization' in headers:
 del headers['Proxy-Authorization']

 try:
 username, password = get_auth_from_url(new_proxies[scheme])
 except KeyError:
 username, password = None, None

 if username and password:
 headers['Proxy-Authorization'] = _basic_auth_str(username, password)

 return new_proxies

 def rebuild_method(self, prepared_request, response):
 """When being redirected we may want to change the method of the request
 based on certain specs or browser behavior.
 """
 method = prepared_request.method

 # http://tools.ietf.org/html/rfc7231#section-6.4.4
 if response.status_code == codes.see_other and method != 'HEAD':
 method = 'GET'

 # Do what the browsers do, despite standards...
 # First, turn 302s into GETs.
 if response.status_code == codes.found and method != 'HEAD':
 method = 'GET'

 # Second, if a POST is responded to with a 301, turn it into a GET.
 # This bizarre behaviour is explained in Issue 1704.
 if response.status_code == codes.moved and method == 'POST':
 method = 'GET'

 prepared_request.method = method

[docs]class Session(SessionRedirectMixin):
 """A Requests session.

 Provides cookie persistence, connection-pooling, and configuration.

 Basic Usage::

 >>> import requests
 >>> s = requests.Session()
 >>> s.get('http://httpbin.org/get')
 <Response [200]>

 Or as a context manager::

 >>> with requests.Session() as s:
 >>> s.get('http://httpbin.org/get')
 <Response [200]>
 """

 __attrs__ = [
 'headers', 'cookies', 'auth', 'proxies', 'hooks', 'params', 'verify',
 'cert', 'prefetch', 'adapters', 'stream', 'trust_env',
 'max_redirects',
]

 def __init__(self):

 #: A case-insensitive dictionary of headers to be sent on each
 #: :class:`Request <Request>` sent from this
 #: :class:`Session <Session>`.
 self.headers = default_headers()

 #: Default Authentication tuple or object to attach to
 #: :class:`Request <Request>`.
 self.auth = None

 #: Dictionary mapping protocol or protocol and host to the URL of the proxy
 #: (e.g. {'http': 'foo.bar:3128', 'http://host.name': 'foo.bar:4012'}) to
 #: be used on each :class:`Request <Request>`.
 self.proxies = {}

 #: Event-handling hooks.
 self.hooks = default_hooks()

 #: Dictionary of querystring data to attach to each
 #: :class:`Request <Request>`. The dictionary values may be lists for
 #: representing multivalued query parameters.
 self.params = {}

 #: Stream response content default.
 self.stream = False

 #: SSL Verification default.
 self.verify = True

 #: SSL certificate default.
 self.cert = None

 #: Maximum number of redirects allowed. If the request exceeds this
 #: limit, a :class:`TooManyRedirects` exception is raised.
 #: This defaults to requests.models.DEFAULT_REDIRECT_LIMIT, which is
 #: 30.
 self.max_redirects = DEFAULT_REDIRECT_LIMIT

 #: Trust environment settings for proxy configuration, default
 #: authentication and similar.
 self.trust_env = True

 #: A CookieJar containing all currently outstanding cookies set on this
 #: session. By default it is a
 #: :class:`RequestsCookieJar <requests.cookies.RequestsCookieJar>`, but
 #: may be any other ``cookielib.CookieJar`` compatible object.
 self.cookies = cookiejar_from_dict({})

 # Default connection adapters.
 self.adapters = OrderedDict()
 self.mount('https://', HTTPAdapter())
 self.mount('http://', HTTPAdapter())

 # Only store 1000 redirects to prevent using infinite memory
 self.redirect_cache = RecentlyUsedContainer(REDIRECT_CACHE_SIZE)

 def __enter__(self):
 return self

 def __exit__(self, *args):
 self.close()

[docs] def prepare_request(self, request):
 """Constructs a :class:`PreparedRequest <PreparedRequest>` for
 transmission and returns it. The :class:`PreparedRequest` has settings
 merged from the :class:`Request <Request>` instance and those of the
 :class:`Session`.

 :param request: :class:`Request` instance to prepare with this
 session's settings.
 """
 cookies = request.cookies or {}

 # Bootstrap CookieJar.
 if not isinstance(cookies, cookielib.CookieJar):
 cookies = cookiejar_from_dict(cookies)

 # Merge with session cookies
 merged_cookies = merge_cookies(
 merge_cookies(RequestsCookieJar(), self.cookies), cookies)

 # Set environment's basic authentication if not explicitly set.
 auth = request.auth
 if self.trust_env and not auth and not self.auth:
 auth = get_netrc_auth(request.url)

 p = PreparedRequest()
 p.prepare(
 method=request.method.upper(),
 url=request.url,
 files=request.files,
 data=request.data,
 json=request.json,
 headers=merge_setting(request.headers, self.headers, dict_class=CaseInsensitiveDict),
 params=merge_setting(request.params, self.params),
 auth=merge_setting(auth, self.auth),
 cookies=merged_cookies,
 hooks=merge_hooks(request.hooks, self.hooks),
)
 return p

[docs] def request(self, method, url,
 params=None,
 data=None,
 headers=None,
 cookies=None,
 files=None,
 auth=None,
 timeout=None,
 allow_redirects=True,
 proxies=None,
 hooks=None,
 stream=None,
 verify=None,
 cert=None,
 json=None):
 """Constructs a :class:`Request <Request>`, prepares it and sends it.
 Returns :class:`Response <Response>` object.

 :param method: method for the new :class:`Request` object.
 :param url: URL for the new :class:`Request` object.
 :param params: (optional) Dictionary or bytes to be sent in the query
 string for the :class:`Request`.
 :param data: (optional) Dictionary, bytes, or file-like object to send
 in the body of the :class:`Request`.
 :param json: (optional) json to send in the body of the
 :class:`Request`.
 :param headers: (optional) Dictionary of HTTP Headers to send with the
 :class:`Request`.
 :param cookies: (optional) Dict or CookieJar object to send with the
 :class:`Request`.
 :param files: (optional) Dictionary of ``'filename': file-like-objects``
 for multipart encoding upload.
 :param auth: (optional) Auth tuple or callable to enable
 Basic/Digest/Custom HTTP Auth.
 :param timeout: (optional) How long to wait for the server to send
 data before giving up, as a float, or a :ref:`(connect timeout,
 read timeout) <timeouts>` tuple.
 :type timeout: float or tuple
 :param allow_redirects: (optional) Set to True by default.
 :type allow_redirects: bool
 :param proxies: (optional) Dictionary mapping protocol or protocol and
 hostname to the URL of the proxy.
 :param stream: (optional) whether to immediately download the response
 content. Defaults to ``False``.
 :param verify: (optional) whether the SSL cert will be verified.
 A CA_BUNDLE path can also be provided. Defaults to ``True``.
 :param cert: (optional) if String, path to ssl client cert file (.pem).
 If Tuple, ('cert', 'key') pair.
 :rtype: requests.Response
 """
 # Create the Request.
 req = Request(
 method = method.upper(),
 url = url,
 headers = headers,
 files = files,
 data = data or {},
 json = json,
 params = params or {},
 auth = auth,
 cookies = cookies,
 hooks = hooks,
)
 prep = self.prepare_request(req)

 proxies = proxies or {}

 settings = self.merge_environment_settings(
 prep.url, proxies, stream, verify, cert
)

 # Send the request.
 send_kwargs = {
 'timeout': timeout,
 'allow_redirects': allow_redirects,
 }
 send_kwargs.update(settings)
 resp = self.send(prep, **send_kwargs)

 return resp

[docs] def get(self, url, **kwargs):
 """Sends a GET request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 kwargs.setdefault('allow_redirects', True)
 return self.request('GET', url, **kwargs)

[docs] def options(self, url, **kwargs):
 """Sends a OPTIONS request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 kwargs.setdefault('allow_redirects', True)
 return self.request('OPTIONS', url, **kwargs)

[docs] def head(self, url, **kwargs):
 """Sends a HEAD request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 kwargs.setdefault('allow_redirects', False)
 return self.request('HEAD', url, **kwargs)

[docs] def post(self, url, data=None, json=None, **kwargs):
 """Sends a POST request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param json: (optional) json to send in the body of the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 return self.request('POST', url, data=data, json=json, **kwargs)

[docs] def put(self, url, data=None, **kwargs):
 """Sends a PUT request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 return self.request('PUT', url, data=data, **kwargs)

[docs] def patch(self, url, data=None, **kwargs):
 """Sends a PATCH request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 return self.request('PATCH', url, data=data, **kwargs)

[docs] def delete(self, url, **kwargs):
 """Sends a DELETE request. Returns :class:`Response` object.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 """

 return self.request('DELETE', url, **kwargs)

[docs] def send(self, request, **kwargs):
 """Send a given PreparedRequest."""
 # Set defaults that the hooks can utilize to ensure they always have
 # the correct parameters to reproduce the previous request.
 kwargs.setdefault('stream', self.stream)
 kwargs.setdefault('verify', self.verify)
 kwargs.setdefault('cert', self.cert)
 kwargs.setdefault('proxies', self.proxies)

 # It's possible that users might accidentally send a Request object.
 # Guard against that specific failure case.
 if isinstance(request, Request):
 raise ValueError('You can only send PreparedRequests.')

 # Set up variables needed for resolve_redirects and dispatching of hooks
 allow_redirects = kwargs.pop('allow_redirects', True)
 stream = kwargs.get('stream')
 hooks = request.hooks

 # Resolve URL in redirect cache, if available.
 if allow_redirects:
 checked_urls = set()
 while request.url in self.redirect_cache:
 checked_urls.add(request.url)
 new_url = self.redirect_cache.get(request.url)
 if new_url in checked_urls:
 break
 request.url = new_url

 # Get the appropriate adapter to use
 adapter = self.get_adapter(url=request.url)

 # Start time (approximately) of the request
 start = datetime.utcnow()

 # Send the request
 r = adapter.send(request, **kwargs)

 # Total elapsed time of the request (approximately)
 r.elapsed = datetime.utcnow() - start

 # Response manipulation hooks
 r = dispatch_hook('response', hooks, r, **kwargs)

 # Persist cookies
 if r.history:

 # If the hooks create history then we want those cookies too
 for resp in r.history:
 extract_cookies_to_jar(self.cookies, resp.request, resp.raw)

 extract_cookies_to_jar(self.cookies, request, r.raw)

 # Redirect resolving generator.
 gen = self.resolve_redirects(r, request, **kwargs)

 # Resolve redirects if allowed.
 history = [resp for resp in gen] if allow_redirects else []

 # Shuffle things around if there's history.
 if history:
 # Insert the first (original) request at the start
 history.insert(0, r)
 # Get the last request made
 r = history.pop()
 r.history = history

 if not stream:
 r.content

 return r

[docs] def merge_environment_settings(self, url, proxies, stream, verify, cert):
 """Check the environment and merge it with some settings."""
 # Gather clues from the surrounding environment.
 if self.trust_env:
 # Set environment's proxies.
 env_proxies = get_environ_proxies(url) or {}
 for (k, v) in env_proxies.items():
 proxies.setdefault(k, v)

 # Look for requests environment configuration and be compatible
 # with cURL.
 if verify is True or verify is None:
 verify = (os.environ.get('REQUESTS_CA_BUNDLE') or
 os.environ.get('CURL_CA_BUNDLE'))

 # Merge all the kwargs.
 proxies = merge_setting(proxies, self.proxies)
 stream = merge_setting(stream, self.stream)
 verify = merge_setting(verify, self.verify)
 cert = merge_setting(cert, self.cert)

 return {'verify': verify, 'proxies': proxies, 'stream': stream,
 'cert': cert}

[docs] def get_adapter(self, url):
 """Returns the appropriate connection adapter for the given URL."""
 for (prefix, adapter) in self.adapters.items():

 if url.lower().startswith(prefix):
 return adapter

 # Nothing matches :-/
 raise InvalidSchema("No connection adapters were found for '%s'" % url)

[docs] def close(self):
 """Closes all adapters and as such the session"""
 for v in self.adapters.values():
 v.close()

[docs] def mount(self, prefix, adapter):
 """Registers a connection adapter to a prefix.

 Adapters are sorted in descending order by key length."""

 self.adapters[prefix] = adapter
 keys_to_move = [k for k in self.adapters if len(k) < len(prefix)]

 for key in keys_to_move:
 self.adapters[key] = self.adapters.pop(key)

 def __getstate__(self):
 state = dict((attr, getattr(self, attr, None)) for attr in self.__attrs__)
 state['redirect_cache'] = dict(self.redirect_cache)
 return state

 def __setstate__(self, state):
 redirect_cache = state.pop('redirect_cache', {})
 for attr, value in state.items():
 setattr(self, attr, value)

 self.redirect_cache = RecentlyUsedContainer(REDIRECT_CACHE_SIZE)
 for redirect, to in redirect_cache.items():
 self.redirect_cache[redirect] = to

def session():
 """Returns a :class:`Session` for context-management."""

 return Session()

 © Copyright 2016. A Kenneth Reitz Project.

_static/comment-close.png

_modules/requests/utils.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 		Module code »

 Source code for requests.utils

-*- coding: utf-8 -*-

"""
requests.utils
~~~~~~~~~~~~~~

This module provides utility functions that are used within Requests
that are also useful for external consumption.

"""

import cgi
import codecs
import collections
import io
import os
import re
import socket
import struct
import warnings

from . import __version__
from . import certs
from .compat import parse_http_list as _parse_list_header
from .compat import (quote, urlparse, bytes, str, OrderedDict, unquote, is_py2,
                     builtin_str, getproxies, proxy_bypass, urlunparse,
                     basestring)
from .cookies import RequestsCookieJar, cookiejar_from_dict
from .structures import CaseInsensitiveDict
from .exceptions import InvalidURL, FileModeWarning

_hush_pyflakes = (RequestsCookieJar,)

NETRC_FILES = ('.netrc', '_netrc')

DEFAULT_CA_BUNDLE_PATH = certs.where()


def dict_to_sequence(d):
    """Returns an internal sequence dictionary update."""

    if hasattr(d, 'items'):
        d = d.items()

    return d


def super_len(o):
    total_length = 0
    current_position = 0

    if hasattr(o, '__len__'):
        total_length = len(o)

    elif hasattr(o, 'len'):
        total_length = o.len

    elif hasattr(o, 'getvalue'):
        # e.g. BytesIO, cStringIO.StringIO
        total_length = len(o.getvalue())

    elif hasattr(o, 'fileno'):
        try:
            fileno = o.fileno()
        except io.UnsupportedOperation:
            pass
        else:
            total_length = os.fstat(fileno).st_size

            # Having used fstat to determine the file length, we need to
            # confirm that this file was opened up in binary mode.
            if 'b' not in o.mode:
                warnings.warn((
                    "Requests has determined the content-length for this "
                    "request using the binary size of the file: however, the "
                    "file has been opened in text mode (i.e. without the 'b' "
                    "flag in the mode). This may lead to an incorrect "
                    "content-length. In Requests 3.0, support will be removed "
                    "for files in text mode."),
                    FileModeWarning
                )

    if hasattr(o, 'tell'):
        try:
            current_position = o.tell()
        except (OSError, IOError):
            # This can happen in some weird situations, such as when the file
            # is actually a special file descriptor like stdin. In this
            # instance, we don't know what the length is, so set it to zero and
            # let requests chunk it instead.
            current_position = total_length

    return max(0, total_length - current_position)


def get_netrc_auth(url, raise_errors=False):
    """Returns the Requests tuple auth for a given url from netrc."""

    try:
        from netrc import netrc, NetrcParseError

        netrc_path = None

        for f in NETRC_FILES:
            try:
                loc = os.path.expanduser('~/{0}'.format(f))
            except KeyError:
                # os.path.expanduser can fail when $HOME is undefined and
                # getpwuid fails. See http://bugs.python.org/issue20164 &
                # https://github.com/kennethreitz/requests/issues/1846
                return

            if os.path.exists(loc):
                netrc_path = loc
                break

        # Abort early if there isn't one.
        if netrc_path is None:
            return

        ri = urlparse(url)

        # Strip port numbers from netloc. This weird `if...encode`` dance is
        # used for Python 3.2, which doesn't support unicode literals.
        splitstr = b':'
        if isinstance(url, str):
            splitstr = splitstr.decode('ascii')
        host = ri.netloc.split(splitstr)[0]

        try:
            _netrc = netrc(netrc_path).authenticators(host)
            if _netrc:
                # Return with login / password
                login_i = (0 if _netrc[0] else 1)
                return (_netrc[login_i], _netrc[2])
        except (NetrcParseError, IOError):
            # If there was a parsing error or a permissions issue reading the file,
            # we'll just skip netrc auth unless explicitly asked to raise errors.
            if raise_errors:
                raise

    # AppEngine hackiness.
    except (ImportError, AttributeError):
        pass


def guess_filename(obj):
    """Tries to guess the filename of the given object."""
    name = getattr(obj, 'name', None)
    if (name and isinstance(name, basestring) and name[0] != '<' and
            name[-1] != '>'):
        return os.path.basename(name)


def from_key_val_list(value):
    """Take an object and test to see if it can be represented as a
    dictionary. Unless it can not be represented as such, return an
    OrderedDict, e.g.,

    ::

        >>> from_key_val_list([('key', 'val')])
        OrderedDict([('key', 'val')])
        >>> from_key_val_list('string')
        ValueError: need more than 1 value to unpack
        >>> from_key_val_list({'key': 'val'})
        OrderedDict([('key', 'val')])
    """
    if value is None:
        return None

    if isinstance(value, (str, bytes, bool, int)):
        raise ValueError('cannot encode objects that are not 2-tuples')

    return OrderedDict(value)


def to_key_val_list(value):
    """Take an object and test to see if it can be represented as a
    dictionary. If it can be, return a list of tuples, e.g.,

    ::

        >>> to_key_val_list([('key', 'val')])
        [('key', 'val')]
        >>> to_key_val_list({'key': 'val'})
        [('key', 'val')]
        >>> to_key_val_list('string')
        ValueError: cannot encode objects that are not 2-tuples.
    """
    if value is None:
        return None

    if isinstance(value, (str, bytes, bool, int)):
        raise ValueError('cannot encode objects that are not 2-tuples')

    if isinstance(value, collections.Mapping):
        value = value.items()

    return list(value)


# From mitsuhiko/werkzeug (used with permission).
def parse_list_header(value):
    """Parse lists as described by RFC 2068 Section 2.

    In particular, parse comma-separated lists where the elements of
    the list may include quoted-strings.  A quoted-string could
    contain a comma.  A non-quoted string could have quotes in the
    middle.  Quotes are removed automatically after parsing.

    It basically works like :func:`parse_set_header` just that items
    may appear multiple times and case sensitivity is preserved.

    The return value is a standard :class:`list`:

    >>> parse_list_header('token, "quoted value"')
    ['token', 'quoted value']

    To create a header from the :class:`list` again, use the
    :func:`dump_header` function.

    :param value: a string with a list header.
    :return: :class:`list`
    """
    result = []
    for item in _parse_list_header(value):
        if item[:1] == item[-1:] == '"':
            item = unquote_header_value(item[1:-1])
        result.append(item)
    return result


# From mitsuhiko/werkzeug (used with permission).
def parse_dict_header(value):
    """Parse lists of key, value pairs as described by RFC 2068 Section 2 and
    convert them into a python dict:

    >>> d = parse_dict_header('foo="is a fish", bar="as well"')
    >>> type(d) is dict
    True
    >>> sorted(d.items())
    [('bar', 'as well'), ('foo', 'is a fish')]

    If there is no value for a key it will be `None`:

    >>> parse_dict_header('key_without_value')
    {'key_without_value': None}

    To create a header from the :class:`dict` again, use the
    :func:`dump_header` function.

    :param value: a string with a dict header.
    :return: :class:`dict`
    """
    result = {}
    for item in _parse_list_header(value):
        if '=' not in item:
            result[item] = None
            continue
        name, value = item.split('=', 1)
        if value[:1] == value[-1:] == '"':
            value = unquote_header_value(value[1:-1])
        result[name] = value
    return result


# From mitsuhiko/werkzeug (used with permission).
def unquote_header_value(value, is_filename=False):
    r"""Unquotes a header value.  (Reversal of :func:`quote_header_value`).
    This does not use the real unquoting but what browsers are actually
    using for quoting.

    :param value: the header value to unquote.
    """
    if value and value[0] == value[-1] == '"':
        # this is not the real unquoting, but fixing this so that the
        # RFC is met will result in bugs with internet explorer and
        # probably some other browsers as well.  IE for example is
        # uploading files with "C:\foo\bar.txt" as filename
        value = value[1:-1]

        # if this is a filename and the starting characters look like
        # a UNC path, then just return the value without quotes.  Using the
        # replace sequence below on a UNC path has the effect of turning
        # the leading double slash into a single slash and then
        # _fix_ie_filename() doesn't work correctly.  See #458.
        if not is_filename or value[:2] != '\\\\':
            return value.replace('\\\\', '\\').replace('\\"', '"')
    return value


[docs]def dict_from_cookiejar(cj):
    """Returns a key/value dictionary from a CookieJar.

    :param cj: CookieJar object to extract cookies from.
    """

    cookie_dict = {}

    for cookie in cj:
        cookie_dict[cookie.name] = cookie.value

    return cookie_dict



[docs]def add_dict_to_cookiejar(cj, cookie_dict):
    """Returns a CookieJar from a key/value dictionary.

    :param cj: CookieJar to insert cookies into.
    :param cookie_dict: Dict of key/values to insert into CookieJar.
    """

    cj2 = cookiejar_from_dict(cookie_dict)
    cj.update(cj2)
    return cj



[docs]def get_encodings_from_content(content):
    """Returns encodings from given content string.

    :param content: bytestring to extract encodings from.
    """
    warnings.warn((
        'In requests 3.0, get_encodings_from_content will be removed. For '
        'more information, please see the discussion on issue #2266. (This'
        ' warning should only appear once.)'),
        DeprecationWarning)

    charset_re = re.compile(r'<meta.*?charset=["\']*(.+?)["\'>]', flags=re.I)
    pragma_re = re.compile(r'<meta.*?content=["\']*;?charset=(.+?)["\'>]', flags=re.I)
    xml_re = re.compile(r'^<\?xml.*?encoding=["\']*(.+?)["\'>]')

    return (charset_re.findall(content) +
            pragma_re.findall(content) +
            xml_re.findall(content))



[docs]def get_encoding_from_headers(headers):
    """Returns encodings from given HTTP Header Dict.

    :param headers: dictionary to extract encoding from.
    """

    content_type = headers.get('content-type')

    if not content_type:
        return None

    content_type, params = cgi.parse_header(content_type)

    if 'charset' in params:
        return params['charset'].strip("'\"")

    if 'text' in content_type:
        return 'ISO-8859-1'



def stream_decode_response_unicode(iterator, r):
    """Stream decodes a iterator."""

    if r.encoding is None:
        for item in iterator:
            yield item
        return

    decoder = codecs.getincrementaldecoder(r.encoding)(errors='replace')
    for chunk in iterator:
        rv = decoder.decode(chunk)
        if rv:
            yield rv
    rv = decoder.decode(b'', final=True)
    if rv:
        yield rv


def iter_slices(string, slice_length):
    """Iterate over slices of a string."""
    pos = 0
    while pos < len(string):
        yield string[pos:pos + slice_length]
        pos += slice_length


[docs]def get_unicode_from_response(r):
    """Returns the requested content back in unicode.

    :param r: Response object to get unicode content from.

    Tried:

    1. charset from content-type
    2. fall back and replace all unicode characters

    """
    warnings.warn((
        'In requests 3.0, get_unicode_from_response will be removed. For '
        'more information, please see the discussion on issue #2266. (This'
        ' warning should only appear once.)'),
        DeprecationWarning)

    tried_encodings = []

    # Try charset from content-type
    encoding = get_encoding_from_headers(r.headers)

    if encoding:
        try:
            return str(r.content, encoding)
        except UnicodeError:
            tried_encodings.append(encoding)

    # Fall back:
    try:
        return str(r.content, encoding, errors='replace')
    except TypeError:
        return r.content



# The unreserved URI characters (RFC 3986)
UNRESERVED_SET = frozenset(
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
    + "0123456789-._~")


def unquote_unreserved(uri):
    """Un-escape any percent-escape sequences in a URI that are unreserved
    characters. This leaves all reserved, illegal and non-ASCII bytes encoded.
    """
    parts = uri.split('%')
    for i in range(1, len(parts)):
        h = parts[i][0:2]
        if len(h) == 2 and h.isalnum():
            try:
                c = chr(int(h, 16))
            except ValueError:
                raise InvalidURL("Invalid percent-escape sequence: '%s'" % h)

            if c in UNRESERVED_SET:
                parts[i] = c + parts[i][2:]
            else:
                parts[i] = '%' + parts[i]
        else:
            parts[i] = '%' + parts[i]
    return ''.join(parts)


def requote_uri(uri):
    """Re-quote the given URI.

    This function passes the given URI through an unquote/quote cycle to
    ensure that it is fully and consistently quoted.
    """
    safe_with_percent = "!#$%&'()*+,/:;=?@[]~"
    safe_without_percent = "!#$&'()*+,/:;=?@[]~"
    try:
        # Unquote only the unreserved characters
        # Then quote only illegal characters (do not quote reserved,
        # unreserved, or '%')
        return quote(unquote_unreserved(uri), safe=safe_with_percent)
    except InvalidURL:
        # We couldn't unquote the given URI, so let's try quoting it, but
        # there may be unquoted '%'s in the URI. We need to make sure they're
        # properly quoted so they do not cause issues elsewhere.
        return quote(uri, safe=safe_without_percent)


def address_in_network(ip, net):
    """
    This function allows you to check if on IP belongs to a network subnet
    Example: returns True if ip = 192.168.1.1 and net = 192.168.1.0/24
             returns False if ip = 192.168.1.1 and net = 192.168.100.0/24
    """
    ipaddr = struct.unpack('=L', socket.inet_aton(ip))[0]
    netaddr, bits = net.split('/')
    netmask = struct.unpack('=L', socket.inet_aton(dotted_netmask(int(bits))))[0]
    network = struct.unpack('=L', socket.inet_aton(netaddr))[0] & netmask
    return (ipaddr & netmask) == (network & netmask)


def dotted_netmask(mask):
    """
    Converts mask from /xx format to xxx.xxx.xxx.xxx
    Example: if mask is 24 function returns 255.255.255.0
    """
    bits = 0xffffffff ^ (1 << 32 - mask) - 1
    return socket.inet_ntoa(struct.pack('>I', bits))


def is_ipv4_address(string_ip):
    try:
        socket.inet_aton(string_ip)
    except socket.error:
        return False
    return True


def is_valid_cidr(string_network):
    """Very simple check of the cidr format in no_proxy variable"""
    if string_network.count('/') == 1:
        try:
            mask = int(string_network.split('/')[1])
        except ValueError:
            return False

        if mask < 1 or mask > 32:
            return False

        try:
            socket.inet_aton(string_network.split('/')[0])
        except socket.error:
            return False
    else:
        return False
    return True


def should_bypass_proxies(url):
    """
    Returns whether we should bypass proxies or not.
    """
    get_proxy = lambda k: os.environ.get(k) or os.environ.get(k.upper())

    # First check whether no_proxy is defined. If it is, check that the URL
    # we're getting isn't in the no_proxy list.
    no_proxy = get_proxy('no_proxy')
    netloc = urlparse(url).netloc

    if no_proxy:
        # We need to check whether we match here. We need to see if we match
        # the end of the netloc, both with and without the port.
        no_proxy = (
            host for host in no_proxy.replace(' ', '').split(',') if host
        )

        ip = netloc.split(':')[0]
        if is_ipv4_address(ip):
            for proxy_ip in no_proxy:
                if is_valid_cidr(proxy_ip):
                    if address_in_network(ip, proxy_ip):
                        return True
                elif ip == proxy_ip:
                    # If no_proxy ip was defined in plain IP notation instead of cidr notation &
                    # matches the IP of the index
                    return True
        else:
            for host in no_proxy:
                if netloc.endswith(host) or netloc.split(':')[0].endswith(host):
                    # The URL does match something in no_proxy, so we don't want
                    # to apply the proxies on this URL.
                    return True

    # If the system proxy settings indicate that this URL should be bypassed,
    # don't proxy.
    # The proxy_bypass function is incredibly buggy on OS X in early versions
    # of Python 2.6, so allow this call to fail. Only catch the specific
    # exceptions we've seen, though: this call failing in other ways can reveal
    # legitimate problems.
    try:
        bypass = proxy_bypass(netloc)
    except (TypeError, socket.gaierror):
        bypass = False

    if bypass:
        return True

    return False


def get_environ_proxies(url):
    """Return a dict of environment proxies."""
    if should_bypass_proxies(url):
        return {}
    else:
        return getproxies()


def select_proxy(url, proxies):
    """Select a proxy for the url, if applicable.

    :param url: The url being for the request
    :param proxies: A dictionary of schemes or schemes and hosts to proxy URLs
    """
    proxies = proxies or {}
    urlparts = urlparse(url)
    if urlparts.hostname is None:
        return proxies.get('all', proxies.get(urlparts.scheme))

    proxy_keys = [
        'all://' + urlparts.hostname,
        'all',
        urlparts.scheme + '://' + urlparts.hostname,
        urlparts.scheme,
    ]
    proxy = None
    for proxy_key in proxy_keys:
        if proxy_key in proxies:
            proxy = proxies[proxy_key]
            break

    return proxy


def default_user_agent(name="python-requests"):
    """Return a string representing the default user agent."""
    return '%s/%s' % (name, __version__)


def default_headers():
    return CaseInsensitiveDict({
        'User-Agent': default_user_agent(),
        'Accept-Encoding': ', '.join(('gzip', 'deflate')),
        'Accept': '*/*',
        'Connection': 'keep-alive',
    })


def parse_header_links(value):
    """Return a dict of parsed link headers proxies.

    i.e. Link: <http:/.../front.jpeg>; rel=front; type="image/jpeg",<http://.../back.jpeg>; rel=back;type="image/jpeg"

    """

    links = []

    replace_chars = ' \'"'

    for val in re.split(', *<', value):
        try:
            url, params = val.split(';', 1)
        except ValueError:
            url, params = val, ''

        link = {'url': url.strip('<> \'"')}

        for param in params.split(';'):
            try:
                key, value = param.split('=')
            except ValueError:
                break

            link[key.strip(replace_chars)] = value.strip(replace_chars)

        links.append(link)

    return links


# Null bytes; no need to recreate these on each call to guess_json_utf
_null = '\x00'.encode('ascii')  # encoding to ASCII for Python 3
_null2 = _null * 2
_null3 = _null * 3


def guess_json_utf(data):
    # JSON always starts with two ASCII characters, so detection is as
    # easy as counting the nulls and from their location and count
    # determine the encoding. Also detect a BOM, if present.
    sample = data[:4]
    if sample in (codecs.BOM_UTF32_LE, codecs.BOM32_BE):
        return 'utf-32'     # BOM included
    if sample[:3] == codecs.BOM_UTF8:
        return 'utf-8-sig'  # BOM included, MS style (discouraged)
    if sample[:2] in (codecs.BOM_UTF16_LE, codecs.BOM_UTF16_BE):
        return 'utf-16'     # BOM included
    nullcount = sample.count(_null)
    if nullcount == 0:
        return 'utf-8'
    if nullcount == 2:
        if sample[::2] == _null2:   # 1st and 3rd are null
            return 'utf-16-be'
        if sample[1::2] == _null2:  # 2nd and 4th are null
            return 'utf-16-le'
        # Did not detect 2 valid UTF-16 ascii-range characters
    if nullcount == 3:
        if sample[:3] == _null3:
            return 'utf-32-be'
        if sample[1:] == _null3:
            return 'utf-32-le'
        # Did not detect a valid UTF-32 ascii-range character
    return None


def prepend_scheme_if_needed(url, new_scheme):
    """Given a URL that may or may not have a scheme, prepend the given scheme.
    Does not replace a present scheme with the one provided as an argument."""
    scheme, netloc, path, params, query, fragment = urlparse(url, new_scheme)

    # urlparse is a finicky beast, and sometimes decides that there isn't a
    # netloc present. Assume that it's being over-cautious, and switch netloc
    # and path if urlparse decided there was no netloc.
    if not netloc:
        netloc, path = path, netloc

    return urlunparse((scheme, netloc, path, params, query, fragment))


def get_auth_from_url(url):
    """Given a url with authentication components, extract them into a tuple of
    username,password."""
    parsed = urlparse(url)

    try:
        auth = (unquote(parsed.username), unquote(parsed.password))
    except (AttributeError, TypeError):
        auth = ('', '')

    return auth


def to_native_string(string, encoding='ascii'):
    """
    Given a string object, regardless of type, returns a representation of that
    string in the native string type, encoding and decoding where necessary.
    This assumes ASCII unless told otherwise.
    """
    if isinstance(string, builtin_str):
        out = string
    else:
        if is_py2:
            out = string.encode(encoding)
        else:
            out = string.decode(encoding)

    return out


def urldefragauth(url):
    """
    Given a url remove the fragment and the authentication part
    """
    scheme, netloc, path, params, query, fragment = urlparse(url)

    # see func:`prepend_scheme_if_needed`
    if not netloc:
        netloc, path = path, netloc

    netloc = netloc.rsplit('@', 1)[-1]

    return urlunparse((scheme, netloc, path, params, query, ''))





          

      

      

    


    
        © Copyright 2016. A <a href="http://kennethreitz.com/pages/open-projects.html">Kenneth Reitz</a> Project.
    

  

_static/down-pressed.png





_modules/requests/cookies.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Requests 2.10.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for requests.cookies

# -*- coding: utf-8 -*-

"""
Compatibility code to be able to use `cookielib.CookieJar` with requests.

requests.utils imports from here, so be careful with imports.
"""

import copy
import time
import calendar
import collections
from .compat import cookielib, urlparse, urlunparse, Morsel

try:
    import threading
    # grr, pyflakes: this fixes "redefinition of unused 'threading'"
    threading
except ImportError:
    import dummy_threading as threading


class MockRequest(object):
    """Wraps a `requests.Request` to mimic a `urllib2.Request`.

    The code in `cookielib.CookieJar` expects this interface in order to correctly
    manage cookie policies, i.e., determine whether a cookie can be set, given the
    domains of the request and the cookie.

    The original request object is read-only. The client is responsible for collecting
    the new headers via `get_new_headers()` and interpreting them appropriately. You
    probably want `get_cookie_header`, defined below.
    """

    def __init__(self, request):
        self._r = request
        self._new_headers = {}
        self.type = urlparse(self._r.url).scheme

    def get_type(self):
        return self.type

    def get_host(self):
        return urlparse(self._r.url).netloc

    def get_origin_req_host(self):
        return self.get_host()

    def get_full_url(self):
        # Only return the response's URL if the user hadn't set the Host
        # header
        if not self._r.headers.get('Host'):
            return self._r.url
        # If they did set it, retrieve it and reconstruct the expected domain
        host = self._r.headers['Host']
        parsed = urlparse(self._r.url)
        # Reconstruct the URL as we expect it
        return urlunparse([
            parsed.scheme, host, parsed.path, parsed.params, parsed.query,
            parsed.fragment
        ])

    def is_unverifiable(self):
        return True

    def has_header(self, name):
        return name in self._r.headers or name in self._new_headers

    def get_header(self, name, default=None):
        return self._r.headers.get(name, self._new_headers.get(name, default))

    def add_header(self, key, val):
        """cookielib has no legitimate use for this method; add it back if you find one."""
        raise NotImplementedError("Cookie headers should be added with add_unredirected_header()")

    def add_unredirected_header(self, name, value):
        self._new_headers[name] = value

    def get_new_headers(self):
        return self._new_headers

    @property
    def unverifiable(self):
        return self.is_unverifiable()

    @property
    def origin_req_host(self):
        return self.get_origin_req_host()

    @property
    def host(self):
        return self.get_host()


class MockResponse(object):
    """Wraps a `httplib.HTTPMessage` to mimic a `urllib.addinfourl`.

    ...what? Basically, expose the parsed HTTP headers from the server response
    the way `cookielib` expects to see them.
    """

    def __init__(self, headers):
        """Make a MockResponse for `cookielib` to read.

        :param headers: a httplib.HTTPMessage or analogous carrying the headers
        """
        self._headers = headers

    def info(self):
        return self._headers

    def getheaders(self, name):
        self._headers.getheaders(name)


def extract_cookies_to_jar(jar, request, response):
    """Extract the cookies from the response into a CookieJar.

    :param jar: cookielib.CookieJar (not necessarily a RequestsCookieJar)
    :param request: our own requests.Request object
    :param response: urllib3.HTTPResponse object
    """
    if not (hasattr(response, '_original_response') and
            response._original_response):
        return
    # the _original_response field is the wrapped httplib.HTTPResponse object,
    req = MockRequest(request)
    # pull out the HTTPMessage with the headers and put it in the mock:
    res = MockResponse(response._original_response.msg)
    jar.extract_cookies(res, req)


def get_cookie_header(jar, request):
    """Produce an appropriate Cookie header string to be sent with `request`, or None."""
    r = MockRequest(request)
    jar.add_cookie_header(r)
    return r.get_new_headers().get('Cookie')


def remove_cookie_by_name(cookiejar, name, domain=None, path=None):
    """Unsets a cookie by name, by default over all domains and paths.

    Wraps CookieJar.clear(), is O(n).
    """
    clearables = []
    for cookie in cookiejar:
        if cookie.name != name:
            continue
        if domain is not None and domain != cookie.domain:
            continue
        if path is not None and path != cookie.path:
            continue
        clearables.append((cookie.domain, cookie.path, cookie.name))

    for domain, path, name in clearables:
        cookiejar.clear(domain, path, name)


[docs]class CookieConflictError(RuntimeError):
    """There are two cookies that meet the criteria specified in the cookie jar.
    Use .get and .set and include domain and path args in order to be more specific."""



[docs]class RequestsCookieJar(cookielib.CookieJar, collections.MutableMapping):
    """Compatibility class; is a cookielib.CookieJar, but exposes a dict
    interface.

    This is the CookieJar we create by default for requests and sessions that
    don't specify one, since some clients may expect response.cookies and
    session.cookies to support dict operations.

    Requests does not use the dict interface internally; it's just for
    compatibility with external client code. All requests code should work
    out of the box with externally provided instances of ``CookieJar``, e.g.
    ``LWPCookieJar`` and ``FileCookieJar``.

    Unlike a regular CookieJar, this class is pickleable.

    .. warning:: dictionary operations that are normally O(1) may be O(n).
    """
[docs]    def get(self, name, default=None, domain=None, path=None):
        """Dict-like get() that also supports optional domain and path args in
        order to resolve naming collisions from using one cookie jar over
        multiple domains.

        .. warning:: operation is O(n), not O(1)."""
        try:
            return self._find_no_duplicates(name, domain, path)
        except KeyError:
            return default


[docs]    def set(self, name, value, **kwargs):
        """Dict-like set() that also supports optional domain and path args in
        order to resolve naming collisions from using one cookie jar over
        multiple domains."""
        # support client code that unsets cookies by assignment of a None value:
        if value is None:
            remove_cookie_by_name(self, name, domain=kwargs.get('domain'), path=kwargs.get('path'))
            return

        if isinstance(value, Morsel):
            c = morsel_to_cookie(value)
        else:
            c = create_cookie(name, value, **kwargs)
        self.set_cookie(c)
        return c


[docs]    def iterkeys(self):
        """Dict-like iterkeys() that returns an iterator of names of cookies
        from the jar. See itervalues() and iteritems()."""
        for cookie in iter(self):
            yield cookie.name


[docs]    def keys(self):
        """Dict-like keys() that returns a list of names of cookies from the
        jar. See values() and items()."""
        return list(self.iterkeys())


[docs]    def itervalues(self):
        """Dict-like itervalues() that returns an iterator of values of cookies
        from the jar. See iterkeys() and iteritems()."""
        for cookie in iter(self):
            yield cookie.value


[docs]    def values(self):
        """Dict-like values() that returns a list of values of cookies from the
        jar. See keys() and items()."""
        return list(self.itervalues())


[docs]    def iteritems(self):
        """Dict-like iteritems() that returns an iterator of name-value tuples
        from the jar. See iterkeys() and itervalues()."""
        for cookie in iter(self):
            yield cookie.name, cookie.value


[docs]    def items(self):
        """Dict-like items() that returns a list of name-value tuples from the
        jar. See keys() and values(). Allows client-code to call
        ``dict(RequestsCookieJar)`` and get a vanilla python dict of key value
        pairs."""
        return list(self.iteritems())


[docs]    def list_domains(self):
        """Utility method to list all the domains in the jar."""
        domains = []
        for cookie in iter(self):
            if cookie.domain not in domains:
                domains.append(cookie.domain)
        return domains


[docs]    def list_paths(self):
        """Utility method to list all the paths in the jar."""
        paths = []
        for cookie in iter(self):
            if cookie.path not in paths:
                paths.append(cookie.path)
        return paths


[docs]    def multiple_domains(self):
        """Returns True if there are multiple domains in the jar.
        Returns False otherwise."""
        domains = []
        for cookie in iter(self):
            if cookie.domain is not None and cookie.domain in domains:
                return True
            domains.append(cookie.domain)
        return False  # there is only one domain in jar


[docs]    def get_dict(self, domain=None, path=None):
        """Takes as an argument an optional domain and path and returns a plain
        old Python dict of name-value pairs of cookies that meet the
        requirements."""
        dictionary = {}
        for cookie in iter(self):
            if (domain is None or cookie.domain == domain) and (path is None
                                                or cookie.path == path):
                dictionary[cookie.name] = cookie.value
        return dictionary


    def __contains__(self, name):
        try:
            return super(RequestsCookieJar, self).__contains__(name)
        except CookieConflictError:
            return True

    def __getitem__(self, name):
        """Dict-like __getitem__() for compatibility with client code. Throws
        exception if there are more than one cookie with name. In that case,
        use the more explicit get() method instead.

        .. warning:: operation is O(n), not O(1)."""

        return self._find_no_duplicates(name)

    def __setitem__(self, name, value):
        """Dict-like __setitem__ for compatibility with client code. Throws
        exception if there is already a cookie of that name in the jar. In that
        case, use the more explicit set() method instead."""

        self.set(name, value)

    def __delitem__(self, name):
        """Deletes a cookie given a name. Wraps ``cookielib.CookieJar``'s
        ``remove_cookie_by_name()``."""
        remove_cookie_by_name(self, name)

    def set_cookie(self, cookie, *args, **kwargs):
        if hasattr(cookie.value, 'startswith') and cookie.value.startswith('"') and cookie.value.endswith('"'):
            cookie.value = cookie.value.replace('\\"', '')
        return super(RequestsCookieJar, self).set_cookie(cookie, *args, **kwargs)

[docs]    def update(self, other):
        """Updates this jar with cookies from another CookieJar or dict-like"""
        if isinstance(other, cookielib.CookieJar):
            for cookie in other:
                self.set_cookie(copy.copy(cookie))
        else:
            super(RequestsCookieJar, self).update(other)


    def _find(self, name, domain=None, path=None):
        """Requests uses this method internally to get cookie values. Takes as
        args name and optional domain and path. Returns a cookie.value. If
        there are conflicting cookies, _find arbitrarily chooses one. See
        _find_no_duplicates if you want an exception thrown if there are
        conflicting cookies."""
        for cookie in iter(self):
            if cookie.name == name:
                if domain is None or cookie.domain == domain:
                    if path is None or cookie.path == path:
                        return cookie.value

        raise KeyError('name=%r, domain=%r, path=%r' % (name, domain, path))

    def _find_no_duplicates(self, name, domain=None, path=None):
        """Both ``__get_item__`` and ``get`` call this function: it's never
        used elsewhere in Requests. Takes as args name and optional domain and
        path. Returns a cookie.value. Throws KeyError if cookie is not found
        and CookieConflictError if there are multiple cookies that match name
        and optionally domain and path."""
        toReturn = None
        for cookie in iter(self):
            if cookie.name == name:
                if domain is None or cookie.domain == domain:
                    if path is None or cookie.path == path:
                        if toReturn is not None:  # if there are multiple cookies that meet passed in criteria
                            raise CookieConflictError('There are multiple cookies with name, %r' % (name))
                        toReturn = cookie.value  # we will eventually return this as long as no cookie conflict

        if toReturn:
            return toReturn
        raise KeyError('name=%r, domain=%r, path=%r' % (name, domain, path))

    def __getstate__(self):
        """Unlike a normal CookieJar, this class is pickleable."""
        state = self.__dict__.copy()
        # remove the unpickleable RLock object
        state.pop('_cookies_lock')
        return state

    def __setstate__(self, state):
        """Unlike a normal CookieJar, this class is pickleable."""
        self.__dict__.update(state)
        if '_cookies_lock' not in self.__dict__:
            self._cookies_lock = threading.RLock()

[docs]    def copy(self):
        """Return a copy of this RequestsCookieJar."""
        new_cj = RequestsCookieJar()
        new_cj.update(self)
        return new_cj




def _copy_cookie_jar(jar):
    if jar is None:
        return None

    if hasattr(jar, 'copy'):
        # We're dealing with an instance of RequestsCookieJar
        return jar.copy()
    # We're dealing with a generic CookieJar instance
    new_jar = copy.copy(jar)
    new_jar.clear()
    for cookie in jar:
        new_jar.set_cookie(copy.copy(cookie))
    return new_jar


def create_cookie(name, value, **kwargs):
    """Make a cookie from underspecified parameters.

    By default, the pair of `name` and `value` will be set for the domain ''
    and sent on every request (this is sometimes called a "supercookie").
    """
    result = dict(
        version=0,
        name=name,
        value=value,
        port=None,
        domain='',
        path='/',
        secure=False,
        expires=None,
        discard=True,
        comment=None,
        comment_url=None,
        rest={'HttpOnly': None},
        rfc2109=False,)

    badargs = set(kwargs) - set(result)
    if badargs:
        err = 'create_cookie() got unexpected keyword arguments: %s'
        raise TypeError(err % list(badargs))

    result.update(kwargs)
    result['port_specified'] = bool(result['port'])
    result['domain_specified'] = bool(result['domain'])
    result['domain_initial_dot'] = result['domain'].startswith('.')
    result['path_specified'] = bool(result['path'])

    return cookielib.Cookie(**result)


def morsel_to_cookie(morsel):
    """Convert a Morsel object into a Cookie containing the one k/v pair."""

    expires = None
    if morsel['max-age']:
        try:
            expires = int(time.time() + int(morsel['max-age']))
        except ValueError:
            raise TypeError('max-age: %s must be integer' % morsel['max-age'])
    elif morsel['expires']:
        time_template = '%a, %d-%b-%Y %H:%M:%S GMT'
        expires = calendar.timegm(
            time.strptime(morsel['expires'], time_template)
        )
    return create_cookie(
        comment=morsel['comment'],
        comment_url=bool(morsel['comment']),
        discard=False,
        domain=morsel['domain'],
        expires=expires,
        name=morsel.key,
        path=morsel['path'],
        port=None,
        rest={'HttpOnly': morsel['httponly']},
        rfc2109=False,
        secure=bool(morsel['secure']),
        value=morsel.value,
        version=morsel['version'] or 0,
    )


[docs]def cookiejar_from_dict(cookie_dict, cookiejar=None, overwrite=True):
    """Returns a CookieJar from a key/value dictionary.

    :param cookie_dict: Dict of key/values to insert into CookieJar.
    :param cookiejar: (optional) A cookiejar to add the cookies to.
    :param overwrite: (optional) If False, will not replace cookies
        already in the jar with new ones.
    """
    if cookiejar is None:
        cookiejar = RequestsCookieJar()

    if cookie_dict is not None:
        names_from_jar = [cookie.name for cookie in cookiejar]
        for name in cookie_dict:
            if overwrite or (name not in names_from_jar):
                cookiejar.set_cookie(create_cookie(name, cookie_dict[name]))

    return cookiejar



def merge_cookies(cookiejar, cookies):
    """Add cookies to cookiejar and returns a merged CookieJar.

    :param cookiejar: CookieJar object to add the cookies to.
    :param cookies: Dictionary or CookieJar object to be added.
    """
    if not isinstance(cookiejar, cookielib.CookieJar):
        raise ValueError('You can only merge into CookieJar')

    if isinstance(cookies, dict):
        cookiejar = cookiejar_from_dict(
            cookies, cookiejar=cookiejar, overwrite=False)
    elif isinstance(cookies, cookielib.CookieJar):
        try:
            cookiejar.update(cookies)
        except AttributeError:
            for cookie_in_jar in cookies:
                cookiejar.set_cookie(cookie_in_jar)

    return cookiejar





          

      

      

    


    
        © Copyright 2016. A <a href="http://kennethreitz.com/pages/open-projects.html">Kenneth Reitz</a> Project.
    

  

_static/ajax-loader.gif





_modules/requests/structures.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Requests 2.10.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for requests.structures

# -*- coding: utf-8 -*-

"""
requests.structures
~~~~~~~~~~~~~~~~~~~

Data structures that power Requests.

"""

import collections

from .compat import OrderedDict

class CaseInsensitiveDict(collections.MutableMapping):
 """
 A case-insensitive ``dict``-like object.

 Implements all methods and operations of
 ``collections.MutableMapping`` as well as dict's ``copy``. Also
 provides ``lower_items``.

 All keys are expected to be strings. The structure remembers the
 case of the last key to be set, and ``iter(instance)``,
 ``keys()``, ``items()``, ``iterkeys()``, and ``iteritems()``
 will contain case-sensitive keys. However, querying and contains
 testing is case insensitive::

 cid = CaseInsensitiveDict()
 cid['Accept'] = 'application/json'
 cid['aCCEPT'] == 'application/json' # True
 list(cid) == ['Accept'] # True

 For example, ``headers['content-encoding']`` will return the
 value of a ``'Content-Encoding'`` response header, regardless
 of how the header name was originally stored.

 If the constructor, ``.update``, or equality comparison
 operations are given keys that have equal ``.lower()``s, the
 behavior is undefined.

 """
 def __init__(self, data=None, **kwargs):
 self._store = OrderedDict()
 if data is None:
 data = {}
 self.update(data, **kwargs)

 def __setitem__(self, key, value):
 # Use the lowercased key for lookups, but store the actual
 # key alongside the value.
 self._store[key.lower()] = (key, value)

 def __getitem__(self, key):
 return self._store[key.lower()][1]

 def __delitem__(self, key):
 del self._store[key.lower()]

 def __iter__(self):
 return (casedkey for casedkey, mappedvalue in self._store.values())

 def __len__(self):
 return len(self._store)

 def lower_items(self):
 """Like iteritems(), but with all lowercase keys."""
 return (
 (lowerkey, keyval[1])
 for (lowerkey, keyval)
 in self._store.items()
)

 def __eq__(self, other):
 if isinstance(other, collections.Mapping):
 other = CaseInsensitiveDict(other)
 else:
 return NotImplemented
 # Compare insensitively
 return dict(self.lower_items()) == dict(other.lower_items())

 # Copy is required
 def copy(self):
 return CaseInsensitiveDict(self._store.values())

 def __repr__(self):
 return str(dict(self.items()))

class LookupDict(dict):
 """Dictionary lookup object."""

 def __init__(self, name=None):
 self.name = name
 super(LookupDict, self).__init__()

 def __repr__(self):
 return '<lookup \'%s\'>' % (self.name)

 def __getitem__(self, key):
 # We allow fall-through here, so values default to None

 return self.__dict__.get(key, None)

 def get(self, key, default=None):
 return self.__dict__.get(key, default)

 © Copyright 2016. A Kenneth Reitz Project.

_modules/requests/models.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 		Module code »

 Source code for requests.models

-*- coding: utf-8 -*-

"""
requests.models
~~~~~~~~~~~~~~~

This module contains the primary objects that power Requests.
"""

import collections
import datetime

from io import BytesIO, UnsupportedOperation
from .hooks import default_hooks
from .structures import CaseInsensitiveDict

from .auth import HTTPBasicAuth
from .cookies import cookiejar_from_dict, get_cookie_header, _copy_cookie_jar
from .packages.urllib3.fields import RequestField
from .packages.urllib3.filepost import encode_multipart_formdata
from .packages.urllib3.util import parse_url
from .packages.urllib3.exceptions import (
    DecodeError, ReadTimeoutError, ProtocolError, LocationParseError)
from .exceptions import (
    HTTPError, MissingSchema, InvalidURL, ChunkedEncodingError,
    ContentDecodingError, ConnectionError, StreamConsumedError)
from .utils import (
    guess_filename, get_auth_from_url, requote_uri,
    stream_decode_response_unicode, to_key_val_list, parse_header_links,
    iter_slices, guess_json_utf, super_len, to_native_string)
from .compat import (
    cookielib, urlunparse, urlsplit, urlencode, str, bytes, StringIO,
    is_py2, chardet, builtin_str, basestring)
from .compat import json as complexjson
from .status_codes import codes

#: The set of HTTP status codes that indicate an automatically
#: processable redirect.
REDIRECT_STATI = (
    codes.moved,              # 301
    codes.found,              # 302
    codes.other,              # 303
    codes.temporary_redirect, # 307
    codes.permanent_redirect, # 308
)

DEFAULT_REDIRECT_LIMIT = 30
CONTENT_CHUNK_SIZE = 10 * 1024
ITER_CHUNK_SIZE = 512


class RequestEncodingMixin(object):
    @property
    def path_url(self):
        """Build the path URL to use."""

        url = []

        p = urlsplit(self.url)

        path = p.path
        if not path:
            path = '/'

        url.append(path)

        query = p.query
        if query:
            url.append('?')
            url.append(query)

        return ''.join(url)

    @staticmethod
    def _encode_params(data):
        """Encode parameters in a piece of data.

        Will successfully encode parameters when passed as a dict or a list of
        2-tuples. Order is retained if data is a list of 2-tuples but arbitrary
        if parameters are supplied as a dict.
        """

        if isinstance(data, (str, bytes)):
            return data
        elif hasattr(data, 'read'):
            return data
        elif hasattr(data, '__iter__'):
            result = []
            for k, vs in to_key_val_list(data):
                if isinstance(vs, basestring) or not hasattr(vs, '__iter__'):
                    vs = [vs]
                for v in vs:
                    if v is not None:
                        result.append(
                            (k.encode('utf-8') if isinstance(k, str) else k,
                             v.encode('utf-8') if isinstance(v, str) else v))
            return urlencode(result, doseq=True)
        else:
            return data

    @staticmethod
    def _encode_files(files, data):
        """Build the body for a multipart/form-data request.

        Will successfully encode files when passed as a dict or a list of
        tuples. Order is retained if data is a list of tuples but arbitrary
        if parameters are supplied as a dict.
        The tuples may be 2-tuples (filename, fileobj), 3-tuples (filename, fileobj, contentype)
        or 4-tuples (filename, fileobj, contentype, custom_headers).

        """
        if (not files):
            raise ValueError("Files must be provided.")
        elif isinstance(data, basestring):
            raise ValueError("Data must not be a string.")

        new_fields = []
        fields = to_key_val_list(data or {})
        files = to_key_val_list(files or {})

        for field, val in fields:
            if isinstance(val, basestring) or not hasattr(val, '__iter__'):
                val = [val]
            for v in val:
                if v is not None:
                    # Don't call str() on bytestrings: in Py3 it all goes wrong.
                    if not isinstance(v, bytes):
                        v = str(v)

                    new_fields.append(
                        (field.decode('utf-8') if isinstance(field, bytes) else field,
                         v.encode('utf-8') if isinstance(v, str) else v))

        for (k, v) in files:
            # support for explicit filename
            ft = None
            fh = None
            if isinstance(v, (tuple, list)):
                if len(v) == 2:
                    fn, fp = v
                elif len(v) == 3:
                    fn, fp, ft = v
                else:
                    fn, fp, ft, fh = v
            else:
                fn = guess_filename(v) or k
                fp = v

            if isinstance(fp, (str, bytes, bytearray)):
                fdata = fp
            else:
                fdata = fp.read()

            rf = RequestField(name=k, data=fdata, filename=fn, headers=fh)
            rf.make_multipart(content_type=ft)
            new_fields.append(rf)

        body, content_type = encode_multipart_formdata(new_fields)

        return body, content_type


class RequestHooksMixin(object):
    def register_hook(self, event, hook):
        """Properly register a hook."""

        if event not in self.hooks:
            raise ValueError('Unsupported event specified, with event name "%s"' % (event))

        if isinstance(hook, collections.Callable):
            self.hooks[event].append(hook)
        elif hasattr(hook, '__iter__'):
            self.hooks[event].extend(h for h in hook if isinstance(h, collections.Callable))

    def deregister_hook(self, event, hook):
        """Deregister a previously registered hook.
        Returns True if the hook existed, False if not.
        """

        try:
            self.hooks[event].remove(hook)
            return True
        except ValueError:
            return False


[docs]class Request(RequestHooksMixin):
    """A user-created :class:`Request <Request>` object.

    Used to prepare a :class:`PreparedRequest <PreparedRequest>`, which is sent to the server.

    :param method: HTTP method to use.
    :param url: URL to send.
    :param headers: dictionary of headers to send.
    :param files: dictionary of {filename: fileobject} files to multipart upload.
    :param data: the body to attach to the request. If a dictionary is provided, form-encoding will take place.
    :param json: json for the body to attach to the request (if files or data is not specified).
    :param params: dictionary of URL parameters to append to the URL.
    :param auth: Auth handler or (user, pass) tuple.
    :param cookies: dictionary or CookieJar of cookies to attach to this request.
    :param hooks: dictionary of callback hooks, for internal usage.

    Usage::

      >>> import requests
      >>> req = requests.Request('GET', 'http://httpbin.org/get')
      >>> req.prepare()
      <PreparedRequest [GET]>

    """
    def __init__(self, method=None, url=None, headers=None, files=None,
        data=None, params=None, auth=None, cookies=None, hooks=None, json=None):

        # Default empty dicts for dict params.
        data = [] if data is None else data
        files = [] if files is None else files
        headers = {} if headers is None else headers
        params = {} if params is None else params
        hooks = {} if hooks is None else hooks

        self.hooks = default_hooks()
        for (k, v) in list(hooks.items()):
            self.register_hook(event=k, hook=v)

        self.method = method
        self.url = url
        self.headers = headers
        self.files = files
        self.data = data
        self.json = json
        self.params = params
        self.auth = auth
        self.cookies = cookies

    def __repr__(self):
        return '<Request [%s]>' % (self.method)

[docs]    def prepare(self):
        """Constructs a :class:`PreparedRequest <PreparedRequest>` for transmission and returns it."""
        p = PreparedRequest()
        p.prepare(
            method=self.method,
            url=self.url,
            headers=self.headers,
            files=self.files,
            data=self.data,
            json=self.json,
            params=self.params,
            auth=self.auth,
            cookies=self.cookies,
            hooks=self.hooks,
        )
        return p




[docs]class PreparedRequest(RequestEncodingMixin, RequestHooksMixin):
    """The fully mutable :class:`PreparedRequest <PreparedRequest>` object,
    containing the exact bytes that will be sent to the server.

    Generated from either a :class:`Request <Request>` object or manually.

    Usage::

      >>> import requests
      >>> req = requests.Request('GET', 'http://httpbin.org/get')
      >>> r = req.prepare()
      <PreparedRequest [GET]>

      >>> s = requests.Session()
      >>> s.send(r)
      <Response [200]>

    """

    def __init__(self):
        #: HTTP verb to send to the server.
        self.method = None
        #: HTTP URL to send the request to.
        self.url = None
        #: dictionary of HTTP headers.
        self.headers = None
        # The `CookieJar` used to create the Cookie header will be stored here
        # after prepare_cookies is called
        self._cookies = None
        #: request body to send to the server.
        self.body = None
        #: dictionary of callback hooks, for internal usage.
        self.hooks = default_hooks()

[docs]    def prepare(self, method=None, url=None, headers=None, files=None,
        data=None, params=None, auth=None, cookies=None, hooks=None, json=None):
        """Prepares the entire request with the given parameters."""

        self.prepare_method(method)
        self.prepare_url(url, params)
        self.prepare_headers(headers)
        self.prepare_cookies(cookies)
        self.prepare_body(data, files, json)
        self.prepare_auth(auth, url)

        # Note that prepare_auth must be last to enable authentication schemes
        # such as OAuth to work on a fully prepared request.

        # This MUST go after prepare_auth. Authenticators could add a hook
        self.prepare_hooks(hooks)


    def __repr__(self):
        return '<PreparedRequest [%s]>' % (self.method)

    def copy(self):
        p = PreparedRequest()
        p.method = self.method
        p.url = self.url
        p.headers = self.headers.copy() if self.headers is not None else None
        p._cookies = _copy_cookie_jar(self._cookies)
        p.body = self.body
        p.hooks = self.hooks
        return p

[docs]    def prepare_method(self, method):
        """Prepares the given HTTP method."""
        self.method = method
        if self.method is not None:
            self.method = to_native_string(self.method.upper())


[docs]    def prepare_url(self, url, params):
        """Prepares the given HTTP URL."""
        #: Accept objects that have string representations.
        #: We're unable to blindly call unicode/str functions
        #: as this will include the bytestring indicator (b'')
        #: on python 3.x.
        #: https://github.com/kennethreitz/requests/pull/2238
        if isinstance(url, bytes):
            url = url.decode('utf8')
        else:
            url = unicode(url) if is_py2 else str(url)

        # Don't do any URL preparation for non-HTTP schemes like `mailto`,
        # `data` etc to work around exceptions from `url_parse`, which
        # handles RFC 3986 only.
        if ':' in url and not url.lower().startswith('http'):
            self.url = url
            return

        # Support for unicode domain names and paths.
        try:
            scheme, auth, host, port, path, query, fragment = parse_url(url)
        except LocationParseError as e:
            raise InvalidURL(*e.args)

        if not scheme:
            error = ("Invalid URL {0!r}: No schema supplied. Perhaps you meant http://{0}?")
            error = error.format(to_native_string(url, 'utf8'))

            raise MissingSchema(error)

        if not host:
            raise InvalidURL("Invalid URL %r: No host supplied" % url)

        # Only want to apply IDNA to the hostname
        try:
            host = host.encode('idna').decode('utf-8')
        except UnicodeError:
            raise InvalidURL('URL has an invalid label.')

        # Carefully reconstruct the network location
        netloc = auth or ''
        if netloc:
            netloc += '@'
        netloc += host
        if port:
            netloc += ':' + str(port)

        # Bare domains aren't valid URLs.
        if not path:
            path = '/'

        if is_py2:
            if isinstance(scheme, str):
                scheme = scheme.encode('utf-8')
            if isinstance(netloc, str):
                netloc = netloc.encode('utf-8')
            if isinstance(path, str):
                path = path.encode('utf-8')
            if isinstance(query, str):
                query = query.encode('utf-8')
            if isinstance(fragment, str):
                fragment = fragment.encode('utf-8')

        if isinstance(params, (str, bytes)):
            params = to_native_string(params)

        enc_params = self._encode_params(params)
        if enc_params:
            if query:
                query = '%s&%s' % (query, enc_params)
            else:
                query = enc_params

        url = requote_uri(urlunparse([scheme, netloc, path, None, query, fragment]))
        self.url = url


[docs]    def prepare_headers(self, headers):
        """Prepares the given HTTP headers."""

        if headers:
            self.headers = CaseInsensitiveDict((to_native_string(name), value) for name, value in headers.items())
        else:
            self.headers = CaseInsensitiveDict()


[docs]    def prepare_body(self, data, files, json=None):
        """Prepares the given HTTP body data."""

        # Check if file, fo, generator, iterator.
        # If not, run through normal process.

        # Nottin' on you.
        body = None
        content_type = None
        length = None

        if not data and json is not None:
            # urllib3 requires a bytes-like body. Python 2's json.dumps
            # provides this natively, but Python 3 gives a Unicode string.
            content_type = 'application/json'
            body = complexjson.dumps(json)
            if not isinstance(body, bytes):
                body = body.encode('utf-8')

        is_stream = all([
            hasattr(data, '__iter__'),
            not isinstance(data, (basestring, list, tuple, dict))
        ])

        try:
            length = super_len(data)
        except (TypeError, AttributeError, UnsupportedOperation):
            length = None

        if is_stream:
            body = data

            if files:
                raise NotImplementedError('Streamed bodies and files are mutually exclusive.')

            if length:
                self.headers['Content-Length'] = builtin_str(length)
            else:
                self.headers['Transfer-Encoding'] = 'chunked'
        else:
            # Multi-part file uploads.
            if files:
                (body, content_type) = self._encode_files(files, data)
            else:
                if data:
                    body = self._encode_params(data)
                    if isinstance(data, basestring) or hasattr(data, 'read'):
                        content_type = None
                    else:
                        content_type = 'application/x-www-form-urlencoded'

            self.prepare_content_length(body)

            # Add content-type if it wasn't explicitly provided.
            if content_type and ('content-type' not in self.headers):
                self.headers['Content-Type'] = content_type

        self.body = body


    def prepare_content_length(self, body):
        if hasattr(body, 'seek') and hasattr(body, 'tell'):
            curr_pos = body.tell()
            body.seek(0, 2)
            end_pos = body.tell()
            self.headers['Content-Length'] = builtin_str(max(0, end_pos - curr_pos))
            body.seek(curr_pos, 0)
        elif body is not None:
            l = super_len(body)
            if l:
                self.headers['Content-Length'] = builtin_str(l)
        elif (self.method not in ('GET', 'HEAD')) and (self.headers.get('Content-Length') is None):
            self.headers['Content-Length'] = '0'

[docs]    def prepare_auth(self, auth, url=''):
        """Prepares the given HTTP auth data."""

        # If no Auth is explicitly provided, extract it from the URL first.
        if auth is None:
            url_auth = get_auth_from_url(self.url)
            auth = url_auth if any(url_auth) else None

        if auth:
            if isinstance(auth, tuple) and len(auth) == 2:
                # special-case basic HTTP auth
                auth = HTTPBasicAuth(*auth)

            # Allow auth to make its changes.
            r = auth(self)

            # Update self to reflect the auth changes.
            self.__dict__.update(r.__dict__)

            # Recompute Content-Length
            self.prepare_content_length(self.body)


[docs]    def prepare_cookies(self, cookies):
        """Prepares the given HTTP cookie data.

        This function eventually generates a ``Cookie`` header from the
        given cookies using cookielib. Due to cookielib's design, the header
        will not be regenerated if it already exists, meaning this function
        can only be called once for the life of the
        :class:`PreparedRequest <PreparedRequest>` object. Any subsequent calls
        to ``prepare_cookies`` will have no actual effect, unless the "Cookie"
        header is removed beforehand."""

        if isinstance(cookies, cookielib.CookieJar):
            self._cookies = cookies
        else:
            self._cookies = cookiejar_from_dict(cookies)

        cookie_header = get_cookie_header(self._cookies, self)
        if cookie_header is not None:
            self.headers['Cookie'] = cookie_header


[docs]    def prepare_hooks(self, hooks):
        """Prepares the given hooks."""
        # hooks can be passed as None to the prepare method and to this
        # method. To prevent iterating over None, simply use an empty list
        # if hooks is False-y
        hooks = hooks or []
        for event in hooks:
            self.register_hook(event, hooks[event])




[docs]class Response(object):
    """The :class:`Response <Response>` object, which contains a
    server's response to an HTTP request.
    """

    __attrs__ = [
        '_content', 'status_code', 'headers', 'url', 'history',
        'encoding', 'reason', 'cookies', 'elapsed', 'request'
    ]

    def __init__(self):
        super(Response, self).__init__()

        self._content = False
        self._content_consumed = False

        #: Integer Code of responded HTTP Status, e.g. 404 or 200.
        self.status_code = None

        #: Case-insensitive Dictionary of Response Headers.
        #: For example, ``headers['content-encoding']`` will return the
        #: value of a ``'Content-Encoding'`` response header.
        self.headers = CaseInsensitiveDict()

        #: File-like object representation of response (for advanced usage).
        #: Use of ``raw`` requires that ``stream=True`` be set on the request.
        # This requirement does not apply for use internally to Requests.
        self.raw = None

        #: Final URL location of Response.
        self.url = None

        #: Encoding to decode with when accessing r.text.
        self.encoding = None

        #: A list of :class:`Response <Response>` objects from
        #: the history of the Request. Any redirect responses will end
        #: up here. The list is sorted from the oldest to the most recent request.
        self.history = []

        #: Textual reason of responded HTTP Status, e.g. "Not Found" or "OK".
        self.reason = None

        #: A CookieJar of Cookies the server sent back.
        self.cookies = cookiejar_from_dict({})

        #: The amount of time elapsed between sending the request
        #: and the arrival of the response (as a timedelta).
        #: This property specifically measures the time taken between sending
        #: the first byte of the request and finishing parsing the headers. It
        #: is therefore unaffected by consuming the response content or the
        #: value of the ``stream`` keyword argument.
        self.elapsed = datetime.timedelta(0)

        #: The :class:`PreparedRequest <PreparedRequest>` object to which this
        #: is a response.
        self.request = None

    def __getstate__(self):
        # Consume everything; accessing the content attribute makes
        # sure the content has been fully read.
        if not self._content_consumed:
            self.content

        return dict(
            (attr, getattr(self, attr, None))
            for attr in self.__attrs__
        )

    def __setstate__(self, state):
        for name, value in state.items():
            setattr(self, name, value)

        # pickled objects do not have .raw
        setattr(self, '_content_consumed', True)
        setattr(self, 'raw', None)

    def __repr__(self):
        return '<Response [%s]>' % (self.status_code)

    def __bool__(self):
        """Returns true if :attr:`status_code` is 'OK'."""
        return self.ok

    def __nonzero__(self):
        """Returns true if :attr:`status_code` is 'OK'."""
        return self.ok

    def __iter__(self):
        """Allows you to use a response as an iterator."""
        return self.iter_content(128)

    @property
    def ok(self):
        try:
            self.raise_for_status()
        except HTTPError:
            return False
        return True

    @property
    def is_redirect(self):
        """True if this Response is a well-formed HTTP redirect that could have
        been processed automatically (by :meth:`Session.resolve_redirects`).
        """
        return ('location' in self.headers and self.status_code in REDIRECT_STATI)

    @property
    def is_permanent_redirect(self):
        """True if this Response one of the permanent versions of redirect"""
        return ('location' in self.headers and self.status_code in (codes.moved_permanently, codes.permanent_redirect))

    @property
    def apparent_encoding(self):
        """The apparent encoding, provided by the chardet library"""
        return chardet.detect(self.content)['encoding']

[docs]    def iter_content(self, chunk_size=1, decode_unicode=False):
        """Iterates over the response data.  When stream=True is set on the
        request, this avoids reading the content at once into memory for
        large responses.  The chunk size is the number of bytes it should
        read into memory.  This is not necessarily the length of each item
        returned as decoding can take place.

        If decode_unicode is True, content will be decoded using the best
        available encoding based on the response.
        """

        def generate():
            # Special case for urllib3.
            if hasattr(self.raw, 'stream'):
                try:
                    for chunk in self.raw.stream(chunk_size, decode_content=True):
                        yield chunk
                except ProtocolError as e:
                    raise ChunkedEncodingError(e)
                except DecodeError as e:
                    raise ContentDecodingError(e)
                except ReadTimeoutError as e:
                    raise ConnectionError(e)
            else:
                # Standard file-like object.
                while True:
                    chunk = self.raw.read(chunk_size)
                    if not chunk:
                        break
                    yield chunk

            self._content_consumed = True

        if self._content_consumed and isinstance(self._content, bool):
            raise StreamConsumedError()
        # simulate reading small chunks of the content
        reused_chunks = iter_slices(self._content, chunk_size)

        stream_chunks = generate()

        chunks = reused_chunks if self._content_consumed else stream_chunks

        if decode_unicode:
            chunks = stream_decode_response_unicode(chunks, self)

        return chunks


[docs]    def iter_lines(self, chunk_size=ITER_CHUNK_SIZE, decode_unicode=None, delimiter=None):
        """Iterates over the response data, one line at a time.  When
        stream=True is set on the request, this avoids reading the
        content at once into memory for large responses.

        .. note:: This method is not reentrant safe.
        """

        pending = None

        for chunk in self.iter_content(chunk_size=chunk_size, decode_unicode=decode_unicode):

            if pending is not None:
                chunk = pending + chunk

            if delimiter:
                lines = chunk.split(delimiter)
            else:
                lines = chunk.splitlines()

            if lines and lines[-1] and chunk and lines[-1][-1] == chunk[-1]:
                pending = lines.pop()
            else:
                pending = None

            for line in lines:
                yield line

        if pending is not None:
            yield pending


    @property
    def content(self):
        """Content of the response, in bytes."""

        if self._content is False:
            # Read the contents.
            try:
                if self._content_consumed:
                    raise RuntimeError(
                        'The content for this response was already consumed')

                if self.status_code == 0:
                    self._content = None
                else:
                    self._content = bytes().join(self.iter_content(CONTENT_CHUNK_SIZE)) or bytes()

            except AttributeError:
                self._content = None

        self._content_consumed = True
        # don't need to release the connection; that's been handled by urllib3
        # since we exhausted the data.
        return self._content

    @property
    def text(self):
        """Content of the response, in unicode.

        If Response.encoding is None, encoding will be guessed using
        ``chardet``.

        The encoding of the response content is determined based solely on HTTP
        headers, following RFC 2616 to the letter. If you can take advantage of
        non-HTTP knowledge to make a better guess at the encoding, you should
        set ``r.encoding`` appropriately before accessing this property.
        """

        # Try charset from content-type
        content = None
        encoding = self.encoding

        if not self.content:
            return str('')

        # Fallback to auto-detected encoding.
        if self.encoding is None:
            encoding = self.apparent_encoding

        # Decode unicode from given encoding.
        try:
            content = str(self.content, encoding, errors='replace')
        except (LookupError, TypeError):
            # A LookupError is raised if the encoding was not found which could
            # indicate a misspelling or similar mistake.
            #
            # A TypeError can be raised if encoding is None
            #
            # So we try blindly encoding.
            content = str(self.content, errors='replace')

        return content

[docs]    def json(self, **kwargs):
        """Returns the json-encoded content of a response, if any.

        :param \*\*kwargs: Optional arguments that ``json.loads`` takes.
        """

        if not self.encoding and self.content and len(self.content) > 3:
            # No encoding set. JSON RFC 4627 section 3 states we should expect
            # UTF-8, -16 or -32. Detect which one to use; If the detection or
            # decoding fails, fall back to `self.text` (using chardet to make
            # a best guess).
            encoding = guess_json_utf(self.content)
            if encoding is not None:
                try:
                    return complexjson.loads(
                        self.content.decode(encoding), **kwargs
                    )
                except UnicodeDecodeError:
                    # Wrong UTF codec detected; usually because it's not UTF-8
                    # but some other 8-bit codec.  This is an RFC violation,
                    # and the server didn't bother to tell us what codec *was*
                    # used.
                    pass
        return complexjson.loads(self.text, **kwargs)


    @property
    def links(self):
        """Returns the parsed header links of the response, if any."""

        header = self.headers.get('link')

        # l = MultiDict()
        l = {}

        if header:
            links = parse_header_links(header)

            for link in links:
                key = link.get('rel') or link.get('url')
                l[key] = link

        return l

[docs]    def raise_for_status(self):
        """Raises stored :class:`HTTPError`, if one occurred."""

        http_error_msg = ''

        if 400 <= self.status_code < 500:
            http_error_msg = '%s Client Error: %s for url: %s' % (self.status_code, self.reason, self.url)

        elif 500 <= self.status_code < 600:
            http_error_msg = '%s Server Error: %s for url: %s' % (self.status_code, self.reason, self.url)

        if http_error_msg:
            raise HTTPError(http_error_msg, response=self)


[docs]    def close(self):
        """Releases the connection back to the pool. Once this method has been
        called the underlying ``raw`` object must not be accessed again.

        *Note: Should not normally need to be called explicitly.*
        """
        if not self._content_consumed:
            return self.raw.close()

        return self.raw.release_conn()







          

      

      

    


    
        © Copyright 2016. A <a href="http://kennethreitz.com/pages/open-projects.html">Kenneth Reitz</a> Project.
    

  

_modules/requests/api.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Requests 2.10.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for requests.api

# -*- coding: utf-8 -*-

"""
requests.api
~~~~~~~~~~~~

This module implements the Requests API.

:copyright: (c) 2012 by Kenneth Reitz.
:license: Apache2, see LICENSE for more details.

"""

from . import sessions

[docs]def request(method, url, **kwargs):
 """Constructs and sends a :class:`Request <Request>`.

 :param method: method for the new :class:`Request` object.
 :param url: URL for the new :class:`Request` object.
 :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param json: (optional) json data to send in the body of the :class:`Request`.
 :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
 :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
 :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload.
 ``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')``
 or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string
 defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers
 to add for the file.
 :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
 :param timeout: (optional) How long to wait for the server to send data
 before giving up, as a float, or a :ref:`(connect timeout, read
 timeout) <timeouts>` tuple.
 :type timeout: float or tuple
 :param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed.
 :type allow_redirects: bool
 :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
 :param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``.
 :param stream: (optional) if ``False``, the response content will be immediately downloaded.
 :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response

 Usage::

 >>> import requests
 >>> req = requests.request('GET', 'http://httpbin.org/get')
 <Response [200]>
 """

 # By using the 'with' statement we are sure the session is closed, thus we
 # avoid leaving sockets open which can trigger a ResourceWarning in some
 # cases, and look like a memory leak in others.
 with sessions.Session() as session:
 return session.request(method=method, url=url, **kwargs)

[docs]def get(url, params=None, **kwargs):
 """Sends a GET request.

 :param url: URL for the new :class:`Request` object.
 :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 kwargs.setdefault('allow_redirects', True)
 return request('get', url, params=params, **kwargs)

def options(url, **kwargs):
 """Sends a OPTIONS request.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 kwargs.setdefault('allow_redirects', True)
 return request('options', url, **kwargs)

[docs]def head(url, **kwargs):
 """Sends a HEAD request.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 kwargs.setdefault('allow_redirects', False)
 return request('head', url, **kwargs)

[docs]def post(url, data=None, json=None, **kwargs):
 """Sends a POST request.

 :param url: URL for the new :class:`Request` object.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param json: (optional) json data to send in the body of the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 return request('post', url, data=data, json=json, **kwargs)

[docs]def put(url, data=None, **kwargs):
 """Sends a PUT request.

 :param url: URL for the new :class:`Request` object.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 return request('put', url, data=data, **kwargs)

[docs]def patch(url, data=None, **kwargs):
 """Sends a PATCH request.

 :param url: URL for the new :class:`Request` object.
 :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 return request('patch', url, data=data, **kwargs)

[docs]def delete(url, **kwargs):
 """Sends a DELETE request.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 return request('delete', url, **kwargs)

 © Copyright 2016. A Kenneth Reitz Project.

_static/comment.png

_modules/requests/adapters.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 		Module code »

 Source code for requests.adapters

-*- coding: utf-8 -*-

"""
requests.adapters
~~~~~~~~~~~~~~~~~

This module contains the transport adapters that Requests uses to define
and maintain connections.
"""

import os.path
import socket

from .models import Response
from .packages.urllib3.poolmanager import PoolManager, proxy_from_url
from .packages.urllib3.response import HTTPResponse
from .packages.urllib3.util import Timeout as TimeoutSauce
from .packages.urllib3.util.retry import Retry
from .compat import urlparse, basestring
from .utils import (DEFAULT_CA_BUNDLE_PATH, get_encoding_from_headers,
                    prepend_scheme_if_needed, get_auth_from_url, urldefragauth,
                    select_proxy, to_native_string)
from .structures import CaseInsensitiveDict
from .packages.urllib3.exceptions import ClosedPoolError
from .packages.urllib3.exceptions import ConnectTimeoutError
from .packages.urllib3.exceptions import HTTPError as _HTTPError
from .packages.urllib3.exceptions import MaxRetryError
from .packages.urllib3.exceptions import NewConnectionError
from .packages.urllib3.exceptions import ProxyError as _ProxyError
from .packages.urllib3.exceptions import ProtocolError
from .packages.urllib3.exceptions import ReadTimeoutError
from .packages.urllib3.exceptions import SSLError as _SSLError
from .packages.urllib3.exceptions import ResponseError
from .cookies import extract_cookies_to_jar
from .exceptions import (ConnectionError, ConnectTimeout, ReadTimeout, SSLError,
                         ProxyError, RetryError, InvalidSchema)
from .auth import _basic_auth_str

try:
    from .packages.urllib3.contrib.socks import SOCKSProxyManager
except ImportError:
    def SOCKSProxyManager(*args, **kwargs):
        raise InvalidSchema("Missing dependencies for SOCKS support.")

DEFAULT_POOLBLOCK = False
DEFAULT_POOLSIZE = 10
DEFAULT_RETRIES = 0
DEFAULT_POOL_TIMEOUT = None


class BaseAdapter(object):
    """The Base Transport Adapter"""

    def __init__(self):
        super(BaseAdapter, self).__init__()

    def send(self, request, stream=False, timeout=None, verify=True,
             cert=None, proxies=None):
        """Sends PreparedRequest object. Returns Response object.

        :param request: The :class:`PreparedRequest <PreparedRequest>` being sent.
        :param stream: (optional) Whether to stream the request content.
        :param timeout: (optional) How long to wait for the server to send
            data before giving up, as a float, or a :ref:`(connect timeout,
            read timeout) <timeouts>` tuple.
        :type timeout: float or tuple
        :param verify: (optional) Whether to verify SSL certificates.
        :param cert: (optional) Any user-provided SSL certificate to be trusted.
        :param proxies: (optional) The proxies dictionary to apply to the request.
        """
        raise NotImplementedError

    def close(self):
        """Cleans up adapter specific items."""
        raise NotImplementedError


[docs]class HTTPAdapter(BaseAdapter):
    """The built-in HTTP Adapter for urllib3.

    Provides a general-case interface for Requests sessions to contact HTTP and
    HTTPS urls by implementing the Transport Adapter interface. This class will
    usually be created by the :class:`Session <Session>` class under the
    covers.

    :param pool_connections: The number of urllib3 connection pools to cache.
    :param pool_maxsize: The maximum number of connections to save in the pool.
    :param max_retries: The maximum number of retries each connection
        should attempt. Note, this applies only to failed DNS lookups, socket
        connections and connection timeouts, never to requests where data has
        made it to the server. By default, Requests does not retry failed
        connections. If you need granular control over the conditions under
        which we retry a request, import urllib3's ``Retry`` class and pass
        that instead.
    :param pool_block: Whether the connection pool should block for connections.

    Usage::

      >>> import requests
      >>> s = requests.Session()
      >>> a = requests.adapters.HTTPAdapter(max_retries=3)
      >>> s.mount('http://', a)
    """
    __attrs__ = ['max_retries', 'config', '_pool_connections', '_pool_maxsize',
                 '_pool_block']

    def __init__(self, pool_connections=DEFAULT_POOLSIZE,
                 pool_maxsize=DEFAULT_POOLSIZE, max_retries=DEFAULT_RETRIES,
                 pool_block=DEFAULT_POOLBLOCK):
        if max_retries == DEFAULT_RETRIES:
            self.max_retries = Retry(0, read=False)
        else:
            self.max_retries = Retry.from_int(max_retries)
        self.config = {}
        self.proxy_manager = {}

        super(HTTPAdapter, self).__init__()

        self._pool_connections = pool_connections
        self._pool_maxsize = pool_maxsize
        self._pool_block = pool_block

        self.init_poolmanager(pool_connections, pool_maxsize, block=pool_block)

    def __getstate__(self):
        return dict((attr, getattr(self, attr, None)) for attr in
                    self.__attrs__)

    def __setstate__(self, state):
        # Can't handle by adding 'proxy_manager' to self.__attrs__ because
        # self.poolmanager uses a lambda function, which isn't pickleable.
        self.proxy_manager = {}
        self.config = {}

        for attr, value in state.items():
            setattr(self, attr, value)

        self.init_poolmanager(self._pool_connections, self._pool_maxsize,
                              block=self._pool_block)

[docs]    def init_poolmanager(self, connections, maxsize, block=DEFAULT_POOLBLOCK, **pool_kwargs):
        """Initializes a urllib3 PoolManager.

        This method should not be called from user code, and is only
        exposed for use when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param connections: The number of urllib3 connection pools to cache.
        :param maxsize: The maximum number of connections to save in the pool.
        :param block: Block when no free connections are available.
        :param pool_kwargs: Extra keyword arguments used to initialize the Pool Manager.
        """
        # save these values for pickling
        self._pool_connections = connections
        self._pool_maxsize = maxsize
        self._pool_block = block

        self.poolmanager = PoolManager(num_pools=connections, maxsize=maxsize,
                                       block=block, strict=True, **pool_kwargs)


[docs]    def proxy_manager_for(self, proxy, **proxy_kwargs):
        """Return urllib3 ProxyManager for the given proxy.

        This method should not be called from user code, and is only
        exposed for use when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param proxy: The proxy to return a urllib3 ProxyManager for.
        :param proxy_kwargs: Extra keyword arguments used to configure the Proxy Manager.
        :returns: ProxyManager
        """
        if proxy in self.proxy_manager:
            manager = self.proxy_manager[proxy]
        elif proxy.lower().startswith('socks'):
            username, password = get_auth_from_url(proxy)
            manager = self.proxy_manager[proxy] = SOCKSProxyManager(
                proxy,
                username=username,
                password=password,
                num_pools=self._pool_connections,
                maxsize=self._pool_maxsize,
                block=self._pool_block,
                **proxy_kwargs
            )
        else:
            proxy_headers = self.proxy_headers(proxy)
            manager = self.proxy_manager[proxy] = proxy_from_url(
                proxy,
                proxy_headers=proxy_headers,
                num_pools=self._pool_connections,
                maxsize=self._pool_maxsize,
                block=self._pool_block,
                **proxy_kwargs)

        return manager


[docs]    def cert_verify(self, conn, url, verify, cert):
        """Verify a SSL certificate. This method should not be called from user
        code, and is only exposed for use when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param conn: The urllib3 connection object associated with the cert.
        :param url: The requested URL.
        :param verify: Whether we should actually verify the certificate.
        :param cert: The SSL certificate to verify.
        """
        if url.lower().startswith('https') and verify:

            cert_loc = None

            # Allow self-specified cert location.
            if verify is not True:
                cert_loc = verify

            if not cert_loc:
                cert_loc = DEFAULT_CA_BUNDLE_PATH

            if not cert_loc:
                raise Exception("Could not find a suitable SSL CA certificate bundle.")

            conn.cert_reqs = 'CERT_REQUIRED'

            if not os.path.isdir(cert_loc):
                conn.ca_certs = cert_loc
            else:
                conn.ca_cert_dir = cert_loc
        else:
            conn.cert_reqs = 'CERT_NONE'
            conn.ca_certs = None
            conn.ca_cert_dir = None

        if cert:
            if not isinstance(cert, basestring):
                conn.cert_file = cert[0]
                conn.key_file = cert[1]
            else:
                conn.cert_file = cert


[docs]    def build_response(self, req, resp):
        """Builds a :class:`Response <requests.Response>` object from a urllib3
        response. This should not be called from user code, and is only exposed
        for use when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`

        :param req: The :class:`PreparedRequest <PreparedRequest>` used to generate the response.
        :param resp: The urllib3 response object.
        """
        response = Response()

        # Fallback to None if there's no status_code, for whatever reason.
        response.status_code = getattr(resp, 'status', None)

        # Make headers case-insensitive.
        response.headers = CaseInsensitiveDict(getattr(resp, 'headers', {}))

        # Set encoding.
        response.encoding = get_encoding_from_headers(response.headers)
        response.raw = resp
        response.reason = response.raw.reason

        if isinstance(req.url, bytes):
            response.url = req.url.decode('utf-8')
        else:
            response.url = req.url

        # Add new cookies from the server.
        extract_cookies_to_jar(response.cookies, req, resp)

        # Give the Response some context.
        response.request = req
        response.connection = self

        return response


[docs]    def get_connection(self, url, proxies=None):
        """Returns a urllib3 connection for the given URL. This should not be
        called from user code, and is only exposed for use when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param url: The URL to connect to.
        :param proxies: (optional) A Requests-style dictionary of proxies used on this request.
        """
        proxy = select_proxy(url, proxies)

        if proxy:
            proxy = prepend_scheme_if_needed(proxy, 'http')
            proxy_manager = self.proxy_manager_for(proxy)
            conn = proxy_manager.connection_from_url(url)
        else:
            # Only scheme should be lower case
            parsed = urlparse(url)
            url = parsed.geturl()
            conn = self.poolmanager.connection_from_url(url)

        return conn


[docs]    def close(self):
        """Disposes of any internal state.

        Currently, this closes the PoolManager and any active ProxyManager,
        which closes any pooled connections.
        """
        self.poolmanager.clear()
        for proxy in self.proxy_manager.values():
            proxy.clear()


[docs]    def request_url(self, request, proxies):
        """Obtain the url to use when making the final request.

        If the message is being sent through a HTTP proxy, the full URL has to
        be used. Otherwise, we should only use the path portion of the URL.

        This should not be called from user code, and is only exposed for use
        when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param request: The :class:`PreparedRequest <PreparedRequest>` being sent.
        :param proxies: A dictionary of schemes or schemes and hosts to proxy URLs.
        """
        proxy = select_proxy(request.url, proxies)
        scheme = urlparse(request.url).scheme

        is_proxied_http_request = (proxy and scheme != 'https')
        using_socks_proxy = False
        if proxy:
            proxy_scheme = urlparse(proxy).scheme.lower()
            using_socks_proxy = proxy_scheme.startswith('socks')

        url = request.path_url
        if is_proxied_http_request and not using_socks_proxy:
            url = urldefragauth(request.url)

        return url


[docs]    def add_headers(self, request, **kwargs):
        """Add any headers needed by the connection. As of v2.0 this does
        nothing by default, but is left for overriding by users that subclass
        the :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        This should not be called from user code, and is only exposed for use
        when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param request: The :class:`PreparedRequest <PreparedRequest>` to add headers to.
        :param kwargs: The keyword arguments from the call to send().
        """
        pass


[docs]    def proxy_headers(self, proxy):
        """Returns a dictionary of the headers to add to any request sent
        through a proxy. This works with urllib3 magic to ensure that they are
        correctly sent to the proxy, rather than in a tunnelled request if
        CONNECT is being used.

        This should not be called from user code, and is only exposed for use
        when subclassing the
        :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.

        :param proxies: The url of the proxy being used for this request.
        """
        headers = {}
        username, password = get_auth_from_url(proxy)

        if username and password:
            headers['Proxy-Authorization'] = _basic_auth_str(username,
                                                             password)

        return headers


[docs]    def send(self, request, stream=False, timeout=None, verify=True, cert=None, proxies=None):
        """Sends PreparedRequest object. Returns Response object.

        :param request: The :class:`PreparedRequest <PreparedRequest>` being sent.
        :param stream: (optional) Whether to stream the request content.
        :param timeout: (optional) How long to wait for the server to send
            data before giving up, as a float, or a :ref:`(connect timeout,
            read timeout) <timeouts>` tuple.
        :type timeout: float or tuple
        :param verify: (optional) Whether to verify SSL certificates.
        :param cert: (optional) Any user-provided SSL certificate to be trusted.
        :param proxies: (optional) The proxies dictionary to apply to the request.
        """

        conn = self.get_connection(request.url, proxies)

        self.cert_verify(conn, request.url, verify, cert)
        url = self.request_url(request, proxies)
        self.add_headers(request)

        chunked = not (request.body is None or 'Content-Length' in request.headers)

        if isinstance(timeout, tuple):
            try:
                connect, read = timeout
                timeout = TimeoutSauce(connect=connect, read=read)
            except ValueError as e:
                # this may raise a string formatting error.
                err = ("Invalid timeout {0}. Pass a (connect, read) "
                       "timeout tuple, or a single float to set "
                       "both timeouts to the same value".format(timeout))
                raise ValueError(err)
        else:
            timeout = TimeoutSauce(connect=timeout, read=timeout)

        try:
            if not chunked:
                resp = conn.urlopen(
                    method=request.method,
                    url=url,
                    body=request.body,
                    headers=request.headers,
                    redirect=False,
                    assert_same_host=False,
                    preload_content=False,
                    decode_content=False,
                    retries=self.max_retries,
                    timeout=timeout
                )

            # Send the request.
            else:
                if hasattr(conn, 'proxy_pool'):
                    conn = conn.proxy_pool

                low_conn = conn._get_conn(timeout=DEFAULT_POOL_TIMEOUT)

                try:
                    low_conn.putrequest(request.method,
                                        url,
                                        skip_accept_encoding=True)

                    for header, value in request.headers.items():
                        low_conn.putheader(header, value)

                    low_conn.endheaders()

                    for i in request.body:
                        low_conn.send(hex(len(i))[2:].encode('utf-8'))
                        low_conn.send(b'\r\n')
                        low_conn.send(i)
                        low_conn.send(b'\r\n')
                    low_conn.send(b'0\r\n\r\n')

                    # Receive the response from the server
                    try:
                        # For Python 2.7+ versions, use buffering of HTTP
                        # responses
                        r = low_conn.getresponse(buffering=True)
                    except TypeError:
                        # For compatibility with Python 2.6 versions and back
                        r = low_conn.getresponse()

                    resp = HTTPResponse.from_httplib(
                        r,
                        pool=conn,
                        connection=low_conn,
                        preload_content=False,
                        decode_content=False
                    )
                except:
                    # If we hit any problems here, clean up the connection.
                    # Then, reraise so that we can handle the actual exception.
                    low_conn.close()
                    raise

        except (ProtocolError, socket.error) as err:
            raise ConnectionError(err, request=request)

        except MaxRetryError as e:
            if isinstance(e.reason, ConnectTimeoutError):
                # TODO: Remove this in 3.0.0: see #2811
                if not isinstance(e.reason, NewConnectionError):
                    raise ConnectTimeout(e, request=request)

            if isinstance(e.reason, ResponseError):
                raise RetryError(e, request=request)

            if isinstance(e.reason, _ProxyError):
                raise ProxyError(e, request=request)

            raise ConnectionError(e, request=request)

        except ClosedPoolError as e:
            raise ConnectionError(e, request=request)

        except _ProxyError as e:
            raise ProxyError(e)

        except (_SSLError, _HTTPError) as e:
            if isinstance(e, _SSLError):
                raise SSLError(e, request=request)
            elif isinstance(e, ReadTimeoutError):
                raise ReadTimeout(e, request=request)
            else:
                raise

        return self.build_response(request, resp)







          

      

      

    


    
        © Copyright 2016. A <a href="http://kennethreitz.com/pages/open-projects.html">Kenneth Reitz</a> Project.
    

  

_static/plus.png





_modules/requests/exceptions.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Requests 2.10.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for requests.exceptions

# -*- coding: utf-8 -*-

"""
requests.exceptions
~~~~~~~~~~~~~~~~~~~

This module contains the set of Requests' exceptions.

"""
from .packages.urllib3.exceptions import HTTPError as BaseHTTPError

[docs]class RequestException(IOError):
 """There was an ambiguous exception that occurred while handling your
 request."""

 def __init__(self, *args, **kwargs):
 """
 Initialize RequestException with `request` and `response` objects.
 """
 response = kwargs.pop('response', None)
 self.response = response
 self.request = kwargs.pop('request', None)
 if (response is not None and not self.request and
 hasattr(response, 'request')):
 self.request = self.response.request
 super(RequestException, self).__init__(*args, **kwargs)

[docs]class HTTPError(RequestException):
 """An HTTP error occurred."""

[docs]class ConnectionError(RequestException):
 """A Connection error occurred."""

class ProxyError(ConnectionError):
 """A proxy error occurred."""

class SSLError(ConnectionError):
 """An SSL error occurred."""

[docs]class Timeout(RequestException):
 """The request timed out.

 Catching this error will catch both
 :exc:`~requests.exceptions.ConnectTimeout` and
 :exc:`~requests.exceptions.ReadTimeout` errors.
 """

[docs]class ConnectTimeout(ConnectionError, Timeout):
 """The request timed out while trying to connect to the remote server.

 Requests that produced this error are safe to retry.
 """

[docs]class ReadTimeout(Timeout):
 """The server did not send any data in the allotted amount of time."""

[docs]class URLRequired(RequestException):
 """A valid URL is required to make a request."""

[docs]class TooManyRedirects(RequestException):
 """Too many redirects."""

class MissingSchema(RequestException, ValueError):
 """The URL schema (e.g. http or https) is missing."""

class InvalidSchema(RequestException, ValueError):
 """See defaults.py for valid schemas."""

class InvalidURL(RequestException, ValueError):
 """ The URL provided was somehow invalid. """

class ChunkedEncodingError(RequestException):
 """The server declared chunked encoding but sent an invalid chunk."""

class ContentDecodingError(RequestException, BaseHTTPError):
 """Failed to decode response content"""

class StreamConsumedError(RequestException, TypeError):
 """The content for this response was already consumed"""

class RetryError(RequestException):
 """Custom retries logic failed"""

Warnings

class RequestsWarning(Warning):
 """Base warning for Requests."""
 pass

class FileModeWarning(RequestsWarning, DeprecationWarning):
 """
 A file was opened in text mode, but Requests determined its binary length.
 """
 pass

 © Copyright 2016. A Kenneth Reitz Project.

_static/file.png

_static/minus.png

_static/up.png

_static/requests-sidebar.png
Requests

_static/up-pressed.png

_static/comment-bright.png

_modules/cookielib.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 		Module code »

 Source code for cookielib

r"""HTTP cookie handling for web clients.

This module has (now fairly distant) origins in Gisle Aas' Perl module
HTTP::Cookies, from the libwww-perl library.

Docstrings, comments and debug strings in this code refer to the
attributes of the HTTP cookie system as cookie-attributes, to distinguish
them clearly from Python attributes.

Class diagram (note that BSDDBCookieJar and the MSIE* classes are not
distributed with the Python standard library, but are available from
http://wwwsearch.sf.net/):

 CookieJar____
 / \ \
 FileCookieJar \ \
 / | \ \ \
 MozillaCookieJar | LWPCookieJar \ \
 | | \
 | ---MSIEBase | \
 | / | | \
 | / MSIEDBCookieJar BSDDBCookieJar
 |/
 MSIECookieJar

"""

__all__ = ['Cookie', 'CookieJar', 'CookiePolicy', 'DefaultCookiePolicy',
 'FileCookieJar', 'LWPCookieJar', 'lwp_cookie_str', 'LoadError',
 'MozillaCookieJar']

import re, urlparse, copy, time, urllib
try:
 import threading as _threading
except ImportError:
 import dummy_threading as _threading
import httplib # only for the default HTTP port
from calendar import timegm

debug = False # set to True to enable debugging via the logging module
logger = None

def _debug(*args):
 if not debug:
 return
 global logger
 if not logger:
 import logging
 logger = logging.getLogger("cookielib")
 return logger.debug(*args)

DEFAULT_HTTP_PORT = str(httplib.HTTP_PORT)
MISSING_FILENAME_TEXT = ("a filename was not supplied (nor was the CookieJar "
 "instance initialised with one)")

def _warn_unhandled_exception():
 # There are a few catch-all except: statements in this module, for
 # catching input that's bad in unexpected ways. Warn if any
 # exceptions are caught there.
 import warnings, traceback, StringIO
 f = StringIO.StringIO()
 traceback.print_exc(None, f)
 msg = f.getvalue()
 warnings.warn("cookielib bug!\n%s" % msg, stacklevel=2)

Date/time conversion

EPOCH_YEAR = 1970
def _timegm(tt):
 year, month, mday, hour, min, sec = tt[:6]
 if ((year >= EPOCH_YEAR) and (1 <= month <= 12) and (1 <= mday <= 31) and
 (0 <= hour <= 24) and (0 <= min <= 59) and (0 <= sec <= 61)):
 return timegm(tt)
 else:
 return None

DAYS = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
MONTHS = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
MONTHS_LOWER = []
for month in MONTHS: MONTHS_LOWER.append(month.lower())

def time2isoz(t=None):
 """Return a string representing time in seconds since epoch, t.

 If the function is called without an argument, it will use the current
 time.

 The format of the returned string is like "YYYY-MM-DD hh:mm:ssZ",
 representing Universal Time (UTC, aka GMT). An example of this format is:

 1994-11-24 08:49:37Z

 """
 if t is None: t = time.time()
 year, mon, mday, hour, min, sec = time.gmtime(t)[:6]
 return "%04d-%02d-%02d %02d:%02d:%02dZ" % (
 year, mon, mday, hour, min, sec)

def time2netscape(t=None):
 """Return a string representing time in seconds since epoch, t.

 If the function is called without an argument, it will use the current
 time.

 The format of the returned string is like this:

 Wed, DD-Mon-YYYY HH:MM:SS GMT

 """
 if t is None: t = time.time()
 year, mon, mday, hour, min, sec, wday = time.gmtime(t)[:7]
 return "%s %02d-%s-%04d %02d:%02d:%02d GMT" % (
 DAYS[wday], mday, MONTHS[mon-1], year, hour, min, sec)

UTC_ZONES = {"GMT": None, "UTC": None, "UT": None, "Z": None}

TIMEZONE_RE = re.compile(r"^([-+])?(\d\d?):?(\d\d)?$")
def offset_from_tz_string(tz):
 offset = None
 if tz in UTC_ZONES:
 offset = 0
 else:
 m = TIMEZONE_RE.search(tz)
 if m:
 offset = 3600 * int(m.group(2))
 if m.group(3):
 offset = offset + 60 * int(m.group(3))
 if m.group(1) == '-':
 offset = -offset
 return offset

def _str2time(day, mon, yr, hr, min, sec, tz):
 # translate month name to number
 # month numbers start with 1 (January)
 try:
 mon = MONTHS_LOWER.index(mon.lower())+1
 except ValueError:
 # maybe it's already a number
 try:
 imon = int(mon)
 except ValueError:
 return None
 if 1 <= imon <= 12:
 mon = imon
 else:
 return None

 # make sure clock elements are defined
 if hr is None: hr = 0
 if min is None: min = 0
 if sec is None: sec = 0

 yr = int(yr)
 day = int(day)
 hr = int(hr)
 min = int(min)
 sec = int(sec)

 if yr < 1000:
 # find "obvious" year
 cur_yr = time.localtime(time.time())[0]
 m = cur_yr % 100
 tmp = yr
 yr = yr + cur_yr - m
 m = m - tmp
 if abs(m) > 50:
 if m > 0: yr = yr + 100
 else: yr = yr - 100

 # convert UTC time tuple to seconds since epoch (not timezone-adjusted)
 t = _timegm((yr, mon, day, hr, min, sec, tz))

 if t is not None:
 # adjust time using timezone string, to get absolute time since epoch
 if tz is None:
 tz = "UTC"
 tz = tz.upper()
 offset = offset_from_tz_string(tz)
 if offset is None:
 return None
 t = t - offset

 return t

STRICT_DATE_RE = re.compile(
 r"^[SMTWF][a-z][a-z], (\d\d) ([JFMASOND][a-z][a-z]) "
 "(\d\d\d\d) (\d\d):(\d\d):(\d\d) GMT$")
WEEKDAY_RE = re.compile(
 r"^(?:Sun|Mon|Tue|Wed|Thu|Fri|Sat)[a-z]*,?\s*", re.I)
LOOSE_HTTP_DATE_RE = re.compile(
 r"""^
 (\d\d?) # day
 (?:\s+|[-\/])
 (\w+) # month
 (?:\s+|[-\/])
 (\d+) # year
 (?:
 (?:\s+|:) # separator before clock
 (\d\d?):(\d\d) # hour:min
 (?::(\d\d))? # optional seconds
)? # optional clock
 \s*
 ([-+]?\d{2,4}|(?![APap][Mm]\b)[A-Za-z]+)? # timezone
 \s*
 (?:\(\w+\))? # ASCII representation of timezone in parens.
 \s*$""", re.X)
def http2time(text):
 """Returns time in seconds since epoch of time represented by a string.

 Return value is an integer.

 None is returned if the format of str is unrecognized, the time is outside
 the representable range, or the timezone string is not recognized. If the
 string contains no timezone, UTC is assumed.

 The timezone in the string may be numerical (like "-0800" or "+0100") or a
 string timezone (like "UTC", "GMT", "BST" or "EST"). Currently, only the
 timezone strings equivalent to UTC (zero offset) are known to the function.

 The function loosely parses the following formats:

 Wed, 09 Feb 1994 22:23:32 GMT -- HTTP format
 Tuesday, 08-Feb-94 14:15:29 GMT -- old rfc850 HTTP format
 Tuesday, 08-Feb-1994 14:15:29 GMT -- broken rfc850 HTTP format
 09 Feb 1994 22:23:32 GMT -- HTTP format (no weekday)
 08-Feb-94 14:15:29 GMT -- rfc850 format (no weekday)
 08-Feb-1994 14:15:29 GMT -- broken rfc850 format (no weekday)

 The parser ignores leading and trailing whitespace. The time may be
 absent.

 If the year is given with only 2 digits, the function will select the
 century that makes the year closest to the current date.

 """
 # fast exit for strictly conforming string
 m = STRICT_DATE_RE.search(text)
 if m:
 g = m.groups()
 mon = MONTHS_LOWER.index(g[1].lower()) + 1
 tt = (int(g[2]), mon, int(g[0]),
 int(g[3]), int(g[4]), float(g[5]))
 return _timegm(tt)

 # No, we need some messy parsing...

 # clean up
 text = text.lstrip()
 text = WEEKDAY_RE.sub("", text, 1) # Useless weekday

 # tz is time zone specifier string
 day, mon, yr, hr, min, sec, tz = [None]*7

 # loose regexp parse
 m = LOOSE_HTTP_DATE_RE.search(text)
 if m is not None:
 day, mon, yr, hr, min, sec, tz = m.groups()
 else:
 return None # bad format

 return _str2time(day, mon, yr, hr, min, sec, tz)

ISO_DATE_RE = re.compile(
 """^
 (\d{4}) # year
 [-\/]?
 (\d\d?) # numerical month
 [-\/]?
 (\d\d?) # day
 (?:
 (?:\s+|[-:Tt]) # separator before clock
 (\d\d?):?(\d\d) # hour:min
 (?::?(\d\d(?:\.\d*)?))? # optional seconds (and fractional)
)? # optional clock
 \s*
 ([-+]?\d\d?:?(:?\d\d)?
 |Z|z)? # timezone (Z is "zero meridian", i.e. GMT)
 \s*$""", re.X)
def iso2time(text):
 """
 As for http2time, but parses the ISO 8601 formats:

 1994-02-03 14:15:29 -0100 -- ISO 8601 format
 1994-02-03 14:15:29 -- zone is optional
 1994-02-03 -- only date
 1994-02-03T14:15:29 -- Use T as separator
 19940203T141529Z -- ISO 8601 compact format
 19940203 -- only date

 """
 # clean up
 text = text.lstrip()

 # tz is time zone specifier string
 day, mon, yr, hr, min, sec, tz = [None]*7

 # loose regexp parse
 m = ISO_DATE_RE.search(text)
 if m is not None:
 # XXX there's an extra bit of the timezone I'm ignoring here: is
 # this the right thing to do?
 yr, mon, day, hr, min, sec, tz, _ = m.groups()
 else:
 return None # bad format

 return _str2time(day, mon, yr, hr, min, sec, tz)

Header parsing

def unmatched(match):
 """Return unmatched part of re.Match object."""
 start, end = match.span(0)
 return match.string[:start]+match.string[end:]

HEADER_TOKEN_RE = re.compile(r"^\s*([^=\s;,]+)")
HEADER_QUOTED_VALUE_RE = re.compile(r"^\s*=\s*\"([^\"\\]*(?:\\.[^\"\\]*)*)\"")
HEADER_VALUE_RE = re.compile(r"^\s*=\s*([^\s;,]*)")
HEADER_ESCAPE_RE = re.compile(r"\\(.)")
def split_header_words(header_values):
 r"""Parse header values into a list of lists containing key,value pairs.

 The function knows how to deal with ",", ";" and "=" as well as quoted
 values after "=". A list of space separated tokens are parsed as if they
 were separated by ";".

 If the header_values passed as argument contains multiple values, then they
 are treated as if they were a single value separated by comma ",".

 This means that this function is useful for parsing header fields that
 follow this syntax (BNF as from the HTTP/1.1 specification, but we relax
 the requirement for tokens).

 headers = #header
 header = (token | parameter) *([";"] (token | parameter))

 token = 1*<any CHAR except CTLs or separators>
 separators = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

 quoted-string = (<"> *(qdtext | quoted-pair) <">)
 qdtext = <any TEXT except <">>
 quoted-pair = "\" CHAR

 parameter = attribute "=" value
 attribute = token
 value = token | quoted-string

 Each header is represented by a list of key/value pairs. The value for a
 simple token (not part of a parameter) is None. Syntactically incorrect
 headers will not necessarily be parsed as you would want.

 This is easier to describe with some examples:

 >>> split_header_words(['foo="bar"; port="80,81"; discard, bar=baz'])
 [[('foo', 'bar'), ('port', '80,81'), ('discard', None)], [('bar', 'baz')]]
 >>> split_header_words(['text/html; charset="iso-8859-1"'])
 [[('text/html', None), ('charset', 'iso-8859-1')]]
 >>> split_header_words([r'Basic realm="\"foo\bar\""'])
 [[('Basic', None), ('realm', '"foobar"')]]

 """
 assert not isinstance(header_values, basestring)
 result = []
 for text in header_values:
 orig_text = text
 pairs = []
 while text:
 m = HEADER_TOKEN_RE.search(text)
 if m:
 text = unmatched(m)
 name = m.group(1)
 m = HEADER_QUOTED_VALUE_RE.search(text)
 if m: # quoted value
 text = unmatched(m)
 value = m.group(1)
 value = HEADER_ESCAPE_RE.sub(r"\1", value)
 else:
 m = HEADER_VALUE_RE.search(text)
 if m: # unquoted value
 text = unmatched(m)
 value = m.group(1)
 value = value.rstrip()
 else:
 # no value, a lone token
 value = None
 pairs.append((name, value))
 elif text.lstrip().startswith(","):
 # concatenated headers, as per RFC 2616 section 4.2
 text = text.lstrip()[1:]
 if pairs: result.append(pairs)
 pairs = []
 else:
 # skip junk
 non_junk, nr_junk_chars = re.subn("^[=\s;]*", "", text)
 assert nr_junk_chars > 0, (
 "split_header_words bug: '%s', '%s', %s" %
 (orig_text, text, pairs))
 text = non_junk
 if pairs: result.append(pairs)
 return result

HEADER_JOIN_ESCAPE_RE = re.compile(r"([\"\\])")
def join_header_words(lists):
 """Do the inverse (almost) of the conversion done by split_header_words.

 Takes a list of lists of (key, value) pairs and produces a single header
 value. Attribute values are quoted if needed.

 >>> join_header_words([[("text/plain", None), ("charset", "iso-8859/1")]])
 'text/plain; charset="iso-8859/1"'
 >>> join_header_words([[("text/plain", None)], [("charset", "iso-8859/1")]])
 'text/plain, charset="iso-8859/1"'

 """
 headers = []
 for pairs in lists:
 attr = []
 for k, v in pairs:
 if v is not None:
 if not re.search(r"^\w+$", v):
 v = HEADER_JOIN_ESCAPE_RE.sub(r"\\\1", v) # escape " and \
 v = '"%s"' % v
 k = "%s=%s" % (k, v)
 attr.append(k)
 if attr: headers.append("; ".join(attr))
 return ", ".join(headers)

def _strip_quotes(text):
 if text.startswith('"'):
 text = text[1:]
 if text.endswith('"'):
 text = text[:-1]
 return text

def parse_ns_headers(ns_headers):
 """Ad-hoc parser for Netscape protocol cookie-attributes.

 The old Netscape cookie format for Set-Cookie can for instance contain
 an unquoted "," in the expires field, so we have to use this ad-hoc
 parser instead of split_header_words.

 XXX This may not make the best possible effort to parse all the crap
 that Netscape Cookie headers contain. Ronald Tschalar's HTTPClient
 parser is probably better, so could do worse than following that if
 this ever gives any trouble.

 Currently, this is also used for parsing RFC 2109 cookies.

 """
 known_attrs = ("expires", "domain", "path", "secure",
 # RFC 2109 attrs (may turn up in Netscape cookies, too)
 "version", "port", "max-age")

 result = []
 for ns_header in ns_headers:
 pairs = []
 version_set = False
 for ii, param in enumerate(re.split(r";\s*", ns_header)):
 param = param.rstrip()
 if param == "": continue
 if "=" not in param:
 k, v = param, None
 else:
 k, v = re.split(r"\s*=\s*", param, 1)
 k = k.lstrip()
 if ii != 0:
 lc = k.lower()
 if lc in known_attrs:
 k = lc
 if k == "version":
 # This is an RFC 2109 cookie.
 v = _strip_quotes(v)
 version_set = True
 if k == "expires":
 # convert expires date to seconds since epoch
 v = http2time(_strip_quotes(v)) # None if invalid
 pairs.append((k, v))

 if pairs:
 if not version_set:
 pairs.append(("version", "0"))
 result.append(pairs)

 return result

IPV4_RE = re.compile(r"\.\d+$")
def is_HDN(text):
 """Return True if text is a host domain name."""
 # XXX
 # This may well be wrong. Which RFC is HDN defined in, if any (for
 # the purposes of RFC 2965)?
 # For the current implementation, what about IPv6? Remember to look
 # at other uses of IPV4_RE also, if change this.
 if IPV4_RE.search(text):
 return False
 if text == "":
 return False
 if text[0] == "." or text[-1] == ".":
 return False
 return True

def domain_match(A, B):
 """Return True if domain A domain-matches domain B, according to RFC 2965.

 A and B may be host domain names or IP addresses.

 RFC 2965, section 1:

 Host names can be specified either as an IP address or a HDN string.
 Sometimes we compare one host name with another. (Such comparisons SHALL
 be case-insensitive.) Host A's name domain-matches host B's if

 * their host name strings string-compare equal; or

 * A is a HDN string and has the form NB, where N is a non-empty
 name string, B has the form .B', and B' is a HDN string. (So,
 x.y.com domain-matches .Y.com but not Y.com.)

 Note that domain-match is not a commutative operation: a.b.c.com
 domain-matches .c.com, but not the reverse.

 """
 # Note that, if A or B are IP addresses, the only relevant part of the
 # definition of the domain-match algorithm is the direct string-compare.
 A = A.lower()
 B = B.lower()
 if A == B:
 return True
 if not is_HDN(A):
 return False
 i = A.rfind(B)
 if i == -1 or i == 0:
 # A does not have form NB, or N is the empty string
 return False
 if not B.startswith("."):
 return False
 if not is_HDN(B[1:]):
 return False
 return True

def liberal_is_HDN(text):
 """Return True if text is a sort-of-like a host domain name.

 For accepting/blocking domains.

 """
 if IPV4_RE.search(text):
 return False
 return True

def user_domain_match(A, B):
 """For blocking/accepting domains.

 A and B may be host domain names or IP addresses.

 """
 A = A.lower()
 B = B.lower()
 if not (liberal_is_HDN(A) and liberal_is_HDN(B)):
 if A == B:
 # equal IP addresses
 return True
 return False
 initial_dot = B.startswith(".")
 if initial_dot and A.endswith(B):
 return True
 if not initial_dot and A == B:
 return True
 return False

cut_port_re = re.compile(r":\d+$")
def request_host(request):
 """Return request-host, as defined by RFC 2965.

 Variation from RFC: returned value is lowercased, for convenient
 comparison.

 """
 url = request.get_full_url()
 host = urlparse.urlparse(url)[1]
 if host == "":
 host = request.get_header("Host", "")

 # remove port, if present
 host = cut_port_re.sub("", host, 1)
 return host.lower()

def eff_request_host(request):
 """Return a tuple (request-host, effective request-host name).

 As defined by RFC 2965, except both are lowercased.

 """
 erhn = req_host = request_host(request)
 if req_host.find(".") == -1 and not IPV4_RE.search(req_host):
 erhn = req_host + ".local"
 return req_host, erhn

def request_path(request):
 """Path component of request-URI, as defined by RFC 2965."""
 url = request.get_full_url()
 parts = urlparse.urlsplit(url)
 path = escape_path(parts.path)
 if not path.startswith("/"):
 # fix bad RFC 2396 absoluteURI
 path = "/" + path
 return path

def request_port(request):
 host = request.get_host()
 i = host.find(':')
 if i >= 0:
 port = host[i+1:]
 try:
 int(port)
 except ValueError:
 _debug("nonnumeric port: '%s'", port)
 return None
 else:
 port = DEFAULT_HTTP_PORT
 return port

Characters in addition to A-Z, a-z, 0-9, '_', '.', and '-' that don't
need to be escaped to form a valid HTTP URL (RFCs 2396 and 1738).
HTTP_PATH_SAFE = "%/;:@&=+$,!~*'()"
ESCAPED_CHAR_RE = re.compile(r"%([0-9a-fA-F][0-9a-fA-F])")
def uppercase_escaped_char(match):
 return "%%%s" % match.group(1).upper()
def escape_path(path):
 """Escape any invalid characters in HTTP URL, and uppercase all escapes."""
 # There's no knowing what character encoding was used to create URLs
 # containing %-escapes, but since we have to pick one to escape invalid
 # path characters, we pick UTF-8, as recommended in the HTML 4.0
 # specification:
 # http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.1
 # And here, kind of: draft-fielding-uri-rfc2396bis-03
 # (And in draft IRI specification: draft-duerst-iri-05)
 # (And here, for new URI schemes: RFC 2718)
 if isinstance(path, unicode):
 path = path.encode("utf-8")
 path = urllib.quote(path, HTTP_PATH_SAFE)
 path = ESCAPED_CHAR_RE.sub(uppercase_escaped_char, path)
 return path

def reach(h):
 """Return reach of host h, as defined by RFC 2965, section 1.

 The reach R of a host name H is defined as follows:

 * If

 - H is the host domain name of a host; and,

 - H has the form A.B; and

 - A has no embedded (that is, interior) dots; and

 - B has at least one embedded dot, or B is the string "local".
 then the reach of H is .B.

 * Otherwise, the reach of H is H.

 >>> reach("www.acme.com")
 '.acme.com'
 >>> reach("acme.com")
 'acme.com'
 >>> reach("acme.local")
 '.local'

 """
 i = h.find(".")
 if i >= 0:
 #a = h[:i] # this line is only here to show what a is
 b = h[i+1:]
 i = b.find(".")
 if is_HDN(h) and (i >= 0 or b == "local"):
 return "."+b
 return h

def is_third_party(request):
 """

 RFC 2965, section 3.3.6:

 An unverifiable transaction is to a third-party host if its request-
 host U does not domain-match the reach R of the request-host O in the
 origin transaction.

 """
 req_host = request_host(request)
 if not domain_match(req_host, reach(request.get_origin_req_host())):
 return True
 else:
 return False

class Cookie:
 """HTTP Cookie.

 This class represents both Netscape and RFC 2965 cookies.

 This is deliberately a very simple class. It just holds attributes. It's
 possible to construct Cookie instances that don't comply with the cookie
 standards. CookieJar.make_cookies is the factory function for Cookie
 objects -- it deals with cookie parsing, supplying defaults, and
 normalising to the representation used in this class. CookiePolicy is
 responsible for checking them to see whether they should be accepted from
 and returned to the server.

 Note that the port may be present in the headers, but unspecified ("Port"
 rather than"Port=80", for example); if this is the case, port is None.

 """

 def __init__(self, version, name, value,
 port, port_specified,
 domain, domain_specified, domain_initial_dot,
 path, path_specified,
 secure,
 expires,
 discard,
 comment,
 comment_url,
 rest,
 rfc2109=False,
):

 if version is not None: version = int(version)
 if expires is not None: expires = int(expires)
 if port is None and port_specified is True:
 raise ValueError("if port is None, port_specified must be false")

 self.version = version
 self.name = name
 self.value = value
 self.port = port
 self.port_specified = port_specified
 # normalise case, as per RFC 2965 section 3.3.3
 self.domain = domain.lower()
 self.domain_specified = domain_specified
 # Sigh. We need to know whether the domain given in the
 # cookie-attribute had an initial dot, in order to follow RFC 2965
 # (as clarified in draft errata). Needed for the returned $Domain
 # value.
 self.domain_initial_dot = domain_initial_dot
 self.path = path
 self.path_specified = path_specified
 self.secure = secure
 self.expires = expires
 self.discard = discard
 self.comment = comment
 self.comment_url = comment_url
 self.rfc2109 = rfc2109

 self._rest = copy.copy(rest)

 def has_nonstandard_attr(self, name):
 return name in self._rest
 def get_nonstandard_attr(self, name, default=None):
 return self._rest.get(name, default)
 def set_nonstandard_attr(self, name, value):
 self._rest[name] = value

 def is_expired(self, now=None):
 if now is None: now = time.time()
 if (self.expires is not None) and (self.expires <= now):
 return True
 return False

 def __str__(self):
 if self.port is None: p = ""
 else: p = ":"+self.port
 limit = self.domain + p + self.path
 if self.value is not None:
 namevalue = "%s=%s" % (self.name, self.value)
 else:
 namevalue = self.name
 return "<Cookie %s for %s>" % (namevalue, limit)

 def __repr__(self):
 args = []
 for name in ("version", "name", "value",
 "port", "port_specified",
 "domain", "domain_specified", "domain_initial_dot",
 "path", "path_specified",
 "secure", "expires", "discard", "comment", "comment_url",
):
 attr = getattr(self, name)
 args.append("%s=%s" % (name, repr(attr)))
 args.append("rest=%s" % repr(self._rest))
 args.append("rfc2109=%s" % repr(self.rfc2109))
 return "Cookie(%s)" % ", ".join(args)

class CookiePolicy:
 """Defines which cookies get accepted from and returned to server.

 May also modify cookies, though this is probably a bad idea.

 The subclass DefaultCookiePolicy defines the standard rules for Netscape
 and RFC 2965 cookies -- override that if you want a customised policy.

 """
 def set_ok(self, cookie, request):
 """Return true if (and only if) cookie should be accepted from server.

 Currently, pre-expired cookies never get this far -- the CookieJar
 class deletes such cookies itself.

 """
 raise NotImplementedError()

 def return_ok(self, cookie, request):
 """Return true if (and only if) cookie should be returned to server."""
 raise NotImplementedError()

 def domain_return_ok(self, domain, request):
 """Return false if cookies should not be returned, given cookie domain.
 """
 return True

 def path_return_ok(self, path, request):
 """Return false if cookies should not be returned, given cookie path.
 """
 return True

class DefaultCookiePolicy(CookiePolicy):
 """Implements the standard rules for accepting and returning cookies."""

 DomainStrictNoDots = 1
 DomainStrictNonDomain = 2
 DomainRFC2965Match = 4

 DomainLiberal = 0
 DomainStrict = DomainStrictNoDots|DomainStrictNonDomain

 def __init__(self,
 blocked_domains=None, allowed_domains=None,
 netscape=True, rfc2965=False,
 rfc2109_as_netscape=None,
 hide_cookie2=False,
 strict_domain=False,
 strict_rfc2965_unverifiable=True,
 strict_ns_unverifiable=False,
 strict_ns_domain=DomainLiberal,
 strict_ns_set_initial_dollar=False,
 strict_ns_set_path=False,
):
 """Constructor arguments should be passed as keyword arguments only."""
 self.netscape = netscape
 self.rfc2965 = rfc2965
 self.rfc2109_as_netscape = rfc2109_as_netscape
 self.hide_cookie2 = hide_cookie2
 self.strict_domain = strict_domain
 self.strict_rfc2965_unverifiable = strict_rfc2965_unverifiable
 self.strict_ns_unverifiable = strict_ns_unverifiable
 self.strict_ns_domain = strict_ns_domain
 self.strict_ns_set_initial_dollar = strict_ns_set_initial_dollar
 self.strict_ns_set_path = strict_ns_set_path

 if blocked_domains is not None:
 self._blocked_domains = tuple(blocked_domains)
 else:
 self._blocked_domains = ()

 if allowed_domains is not None:
 allowed_domains = tuple(allowed_domains)
 self._allowed_domains = allowed_domains

 def blocked_domains(self):
 """Return the sequence of blocked domains (as a tuple)."""
 return self._blocked_domains
 def set_blocked_domains(self, blocked_domains):
 """Set the sequence of blocked domains."""
 self._blocked_domains = tuple(blocked_domains)

 def is_blocked(self, domain):
 for blocked_domain in self._blocked_domains:
 if user_domain_match(domain, blocked_domain):
 return True
 return False

 def allowed_domains(self):
 """Return None, or the sequence of allowed domains (as a tuple)."""
 return self._allowed_domains
 def set_allowed_domains(self, allowed_domains):
 """Set the sequence of allowed domains, or None."""
 if allowed_domains is not None:
 allowed_domains = tuple(allowed_domains)
 self._allowed_domains = allowed_domains

 def is_not_allowed(self, domain):
 if self._allowed_domains is None:
 return False
 for allowed_domain in self._allowed_domains:
 if user_domain_match(domain, allowed_domain):
 return False
 return True

 def set_ok(self, cookie, request):
 """
 If you override .set_ok(), be sure to call this method. If it returns
 false, so should your subclass (assuming your subclass wants to be more
 strict about which cookies to accept).

 """
 _debug(" - checking cookie %s=%s", cookie.name, cookie.value)

 assert cookie.name is not None

 for n in "version", "verifiability", "name", "path", "domain", "port":
 fn_name = "set_ok_"+n
 fn = getattr(self, fn_name)
 if not fn(cookie, request):
 return False

 return True

 def set_ok_version(self, cookie, request):
 if cookie.version is None:
 # Version is always set to 0 by parse_ns_headers if it's a Netscape
 # cookie, so this must be an invalid RFC 2965 cookie.
 _debug(" Set-Cookie2 without version attribute (%s=%s)",
 cookie.name, cookie.value)
 return False
 if cookie.version > 0 and not self.rfc2965:
 _debug(" RFC 2965 cookies are switched off")
 return False
 elif cookie.version == 0 and not self.netscape:
 _debug(" Netscape cookies are switched off")
 return False
 return True

 def set_ok_verifiability(self, cookie, request):
 if request.is_unverifiable() and is_third_party(request):
 if cookie.version > 0 and self.strict_rfc2965_unverifiable:
 _debug(" third-party RFC 2965 cookie during "
 "unverifiable transaction")
 return False
 elif cookie.version == 0 and self.strict_ns_unverifiable:
 _debug(" third-party Netscape cookie during "
 "unverifiable transaction")
 return False
 return True

 def set_ok_name(self, cookie, request):
 # Try and stop servers setting V0 cookies designed to hack other
 # servers that know both V0 and V1 protocols.
 if (cookie.version == 0 and self.strict_ns_set_initial_dollar and
 cookie.name.startswith("$")):
 _debug(" illegal name (starts with '$'): '%s'", cookie.name)
 return False
 return True

 def set_ok_path(self, cookie, request):
 if cookie.path_specified:
 req_path = request_path(request)
 if ((cookie.version > 0 or
 (cookie.version == 0 and self.strict_ns_set_path)) and
 not req_path.startswith(cookie.path)):
 _debug(" path attribute %s is not a prefix of request "
 "path %s", cookie.path, req_path)
 return False
 return True

 def set_ok_domain(self, cookie, request):
 if self.is_blocked(cookie.domain):
 _debug(" domain %s is in user block-list", cookie.domain)
 return False
 if self.is_not_allowed(cookie.domain):
 _debug(" domain %s is not in user allow-list", cookie.domain)
 return False
 if cookie.domain_specified:
 req_host, erhn = eff_request_host(request)
 domain = cookie.domain
 if self.strict_domain and (domain.count(".") >= 2):
 # XXX This should probably be compared with the Konqueror
 # (kcookiejar.cpp) and Mozilla implementations, but it's a
 # losing battle.
 i = domain.rfind(".")
 j = domain.rfind(".", 0, i)
 if j == 0: # domain like .foo.bar
 tld = domain[i+1:]
 sld = domain[j+1:i]
 if sld.lower() in ("co", "ac", "com", "edu", "org", "net",
 "gov", "mil", "int", "aero", "biz", "cat", "coop",
 "info", "jobs", "mobi", "museum", "name", "pro",
 "travel", "eu") and len(tld) == 2:
 # domain like .co.uk
 _debug(" country-code second level domain %s", domain)
 return False
 if domain.startswith("."):
 undotted_domain = domain[1:]
 else:
 undotted_domain = domain
 embedded_dots = (undotted_domain.find(".") >= 0)
 if not embedded_dots and domain != ".local":
 _debug(" non-local domain %s contains no embedded dot",
 domain)
 return False
 if cookie.version == 0:
 if (not erhn.endswith(domain) and
 (not erhn.startswith(".") and
 not ("."+erhn).endswith(domain))):
 _debug(" effective request-host %s (even with added "
 "initial dot) does not end with %s",
 erhn, domain)
 return False
 if (cookie.version > 0 or
 (self.strict_ns_domain & self.DomainRFC2965Match)):
 if not domain_match(erhn, domain):
 _debug(" effective request-host %s does not domain-match "
 "%s", erhn, domain)
 return False
 if (cookie.version > 0 or
 (self.strict_ns_domain & self.DomainStrictNoDots)):
 host_prefix = req_host[:-len(domain)]
 if (host_prefix.find(".") >= 0 and
 not IPV4_RE.search(req_host)):
 _debug(" host prefix %s for domain %s contains a dot",
 host_prefix, domain)
 return False
 return True

 def set_ok_port(self, cookie, request):
 if cookie.port_specified:
 req_port = request_port(request)
 if req_port is None:
 req_port = "80"
 else:
 req_port = str(req_port)
 for p in cookie.port.split(","):
 try:
 int(p)
 except ValueError:
 _debug(" bad port %s (not numeric)", p)
 return False
 if p == req_port:
 break
 else:
 _debug(" request port (%s) not found in %s",
 req_port, cookie.port)
 return False
 return True

 def return_ok(self, cookie, request):
 """
 If you override .return_ok(), be sure to call this method. If it
 returns false, so should your subclass (assuming your subclass wants to
 be more strict about which cookies to return).

 """
 # Path has already been checked by .path_return_ok(), and domain
 # blocking done by .domain_return_ok().
 _debug(" - checking cookie %s=%s", cookie.name, cookie.value)

 for n in "version", "verifiability", "secure", "expires", "port", "domain":
 fn_name = "return_ok_"+n
 fn = getattr(self, fn_name)
 if not fn(cookie, request):
 return False
 return True

 def return_ok_version(self, cookie, request):
 if cookie.version > 0 and not self.rfc2965:
 _debug(" RFC 2965 cookies are switched off")
 return False
 elif cookie.version == 0 and not self.netscape:
 _debug(" Netscape cookies are switched off")
 return False
 return True

 def return_ok_verifiability(self, cookie, request):
 if request.is_unverifiable() and is_third_party(request):
 if cookie.version > 0 and self.strict_rfc2965_unverifiable:
 _debug(" third-party RFC 2965 cookie during unverifiable "
 "transaction")
 return False
 elif cookie.version == 0 and self.strict_ns_unverifiable:
 _debug(" third-party Netscape cookie during unverifiable "
 "transaction")
 return False
 return True

 def return_ok_secure(self, cookie, request):
 if cookie.secure and request.get_type() != "https":
 _debug(" secure cookie with non-secure request")
 return False
 return True

 def return_ok_expires(self, cookie, request):
 if cookie.is_expired(self._now):
 _debug(" cookie expired")
 return False
 return True

 def return_ok_port(self, cookie, request):
 if cookie.port:
 req_port = request_port(request)
 if req_port is None:
 req_port = "80"
 for p in cookie.port.split(","):
 if p == req_port:
 break
 else:
 _debug(" request port %s does not match cookie port %s",
 req_port, cookie.port)
 return False
 return True

 def return_ok_domain(self, cookie, request):
 req_host, erhn = eff_request_host(request)
 domain = cookie.domain

 # strict check of non-domain cookies: Mozilla does this, MSIE5 doesn't
 if (cookie.version == 0 and
 (self.strict_ns_domain & self.DomainStrictNonDomain) and
 not cookie.domain_specified and domain != erhn):
 _debug(" cookie with unspecified domain does not string-compare "
 "equal to request domain")
 return False

 if cookie.version > 0 and not domain_match(erhn, domain):
 _debug(" effective request-host name %s does not domain-match "
 "RFC 2965 cookie domain %s", erhn, domain)
 return False
 if cookie.version == 0 and not ("."+erhn).endswith(domain):
 _debug(" request-host %s does not match Netscape cookie domain "
 "%s", req_host, domain)
 return False
 return True

 def domain_return_ok(self, domain, request):
 # Liberal check of. This is here as an optimization to avoid
 # having to load lots of MSIE cookie files unless necessary.
 req_host, erhn = eff_request_host(request)
 if not req_host.startswith("."):
 req_host = "."+req_host
 if not erhn.startswith("."):
 erhn = "."+erhn
 if not (req_host.endswith(domain) or erhn.endswith(domain)):
 #_debug(" request domain %s does not match cookie domain %s",
 # req_host, domain)
 return False

 if self.is_blocked(domain):
 _debug(" domain %s is in user block-list", domain)
 return False
 if self.is_not_allowed(domain):
 _debug(" domain %s is not in user allow-list", domain)
 return False

 return True

 def path_return_ok(self, path, request):
 _debug("- checking cookie path=%s", path)
 req_path = request_path(request)
 if not req_path.startswith(path):
 _debug(" %s does not path-match %s", req_path, path)
 return False
 return True

def vals_sorted_by_key(adict):
 keys = adict.keys()
 keys.sort()
 return map(adict.get, keys)

def deepvalues(mapping):
 """Iterates over nested mapping, depth-first, in sorted order by key."""
 values = vals_sorted_by_key(mapping)
 for obj in values:
 mapping = False
 try:
 obj.items
 except AttributeError:
 pass
 else:
 mapping = True
 for subobj in deepvalues(obj):
 yield subobj
 if not mapping:
 yield obj

Used as second parameter to dict.get() method, to distinguish absent
dict key from one with a None value.
class Absent: pass

class CookieJar:
 """Collection of HTTP cookies.

 You may not need to know about this class: try
 urllib2.build_opener(HTTPCookieProcessor).open(url).

 """

 non_word_re = re.compile(r"\W")
 quote_re = re.compile(r"([\"\\])")
 strict_domain_re = re.compile(r"\.?[^.]*")
 domain_re = re.compile(r"[^.]*")
 dots_re = re.compile(r"^\.+")

 magic_re = r"^\#LWP-Cookies-(\d+\.\d+)"

 def __init__(self, policy=None):
 if policy is None:
 policy = DefaultCookiePolicy()
 self._policy = policy

 self._cookies_lock = _threading.RLock()
 self._cookies = {}

 def set_policy(self, policy):
 self._policy = policy

 def _cookies_for_domain(self, domain, request):
 cookies = []
 if not self._policy.domain_return_ok(domain, request):
 return []
 _debug("Checking %s for cookies to return", domain)
 cookies_by_path = self._cookies[domain]
 for path in cookies_by_path.keys():
 if not self._policy.path_return_ok(path, request):
 continue
 cookies_by_name = cookies_by_path[path]
 for cookie in cookies_by_name.values():
 if not self._policy.return_ok(cookie, request):
 _debug(" not returning cookie")
 continue
 _debug(" it's a match")
 cookies.append(cookie)
 return cookies

 def _cookies_for_request(self, request):
 """Return a list of cookies to be returned to server."""
 cookies = []
 for domain in self._cookies.keys():
 cookies.extend(self._cookies_for_domain(domain, request))
 return cookies

 def _cookie_attrs(self, cookies):
 """Return a list of cookie-attributes to be returned to server.

 like ['foo="bar"; $Path="/"', ...]

 The $Version attribute is also added when appropriate (currently only
 once per request).

 """
 # add cookies in order of most specific (ie. longest) path first
 cookies.sort(key=lambda arg: len(arg.path), reverse=True)

 version_set = False

 attrs = []
 for cookie in cookies:
 # set version of Cookie header
 # XXX
 # What should it be if multiple matching Set-Cookie headers have
 # different versions themselves?
 # Answer: there is no answer; was supposed to be settled by
 # RFC 2965 errata, but that may never appear...
 version = cookie.version
 if not version_set:
 version_set = True
 if version > 0:
 attrs.append("$Version=%s" % version)

 # quote cookie value if necessary
 # (not for Netscape protocol, which already has any quotes
 # intact, due to the poorly-specified Netscape Cookie: syntax)
 if ((cookie.value is not None) and
 self.non_word_re.search(cookie.value) and version > 0):
 value = self.quote_re.sub(r"\\\1", cookie.value)
 else:
 value = cookie.value

 # add cookie-attributes to be returned in Cookie header
 if cookie.value is None:
 attrs.append(cookie.name)
 else:
 attrs.append("%s=%s" % (cookie.name, value))
 if version > 0:
 if cookie.path_specified:
 attrs.append('$Path="%s"' % cookie.path)
 if cookie.domain.startswith("."):
 domain = cookie.domain
 if (not cookie.domain_initial_dot and
 domain.startswith(".")):
 domain = domain[1:]
 attrs.append('$Domain="%s"' % domain)
 if cookie.port is not None:
 p = "$Port"
 if cookie.port_specified:
 p = p + ('="%s"' % cookie.port)
 attrs.append(p)

 return attrs

 def add_cookie_header(self, request):
 """Add correct Cookie: header to request (urllib2.Request object).

 The Cookie2 header is also added unless policy.hide_cookie2 is true.

 """
 _debug("add_cookie_header")
 self._cookies_lock.acquire()
 try:

 self._policy._now = self._now = int(time.time())

 cookies = self._cookies_for_request(request)

 attrs = self._cookie_attrs(cookies)
 if attrs:
 if not request.has_header("Cookie"):
 request.add_unredirected_header(
 "Cookie", "; ".join(attrs))

 # if necessary, advertise that we know RFC 2965
 if (self._policy.rfc2965 and not self._policy.hide_cookie2 and
 not request.has_header("Cookie2")):
 for cookie in cookies:
 if cookie.version != 1:
 request.add_unredirected_header("Cookie2", '$Version="1"')
 break

 finally:
 self._cookies_lock.release()

 self.clear_expired_cookies()

 def _normalized_cookie_tuples(self, attrs_set):
 """Return list of tuples containing normalised cookie information.

 attrs_set is the list of lists of key,value pairs extracted from
 the Set-Cookie or Set-Cookie2 headers.

 Tuples are name, value, standard, rest, where name and value are the
 cookie name and value, standard is a dictionary containing the standard
 cookie-attributes (discard, secure, version, expires or max-age,
 domain, path and port) and rest is a dictionary containing the rest of
 the cookie-attributes.

 """
 cookie_tuples = []

 boolean_attrs = "discard", "secure"
 value_attrs = ("version",
 "expires", "max-age",
 "domain", "path", "port",
 "comment", "commenturl")

 for cookie_attrs in attrs_set:
 name, value = cookie_attrs[0]

 # Build dictionary of standard cookie-attributes (standard) and
 # dictionary of other cookie-attributes (rest).

 # Note: expiry time is normalised to seconds since epoch. V0
 # cookies should have the Expires cookie-attribute, and V1 cookies
 # should have Max-Age, but since V1 includes RFC 2109 cookies (and
 # since V0 cookies may be a mish-mash of Netscape and RFC 2109), we
 # accept either (but prefer Max-Age).
 max_age_set = False

 bad_cookie = False

 standard = {}
 rest = {}
 for k, v in cookie_attrs[1:]:
 lc = k.lower()
 # don't lose case distinction for unknown fields
 if lc in value_attrs or lc in boolean_attrs:
 k = lc
 if k in boolean_attrs and v is None:
 # boolean cookie-attribute is present, but has no value
 # (like "discard", rather than "port=80")
 v = True
 if k in standard:
 # only first value is significant
 continue
 if k == "domain":
 if v is None:
 _debug(" missing value for domain attribute")
 bad_cookie = True
 break
 # RFC 2965 section 3.3.3
 v = v.lower()
 if k == "expires":
 if max_age_set:
 # Prefer max-age to expires (like Mozilla)
 continue
 if v is None:
 _debug(" missing or invalid value for expires "
 "attribute: treating as session cookie")
 continue
 if k == "max-age":
 max_age_set = True
 try:
 v = int(v)
 except ValueError:
 _debug(" missing or invalid (non-numeric) value for "
 "max-age attribute")
 bad_cookie = True
 break
 # convert RFC 2965 Max-Age to seconds since epoch
 # XXX Strictly you're supposed to follow RFC 2616
 # age-calculation rules. Remember that zero Max-Age is a
 # is a request to discard (old and new) cookie, though.
 k = "expires"
 v = self._now + v
 if (k in value_attrs) or (k in boolean_attrs):
 if (v is None and
 k not in ("port", "comment", "commenturl")):
 _debug(" missing value for %s attribute" % k)
 bad_cookie = True
 break
 standard[k] = v
 else:
 rest[k] = v

 if bad_cookie:
 continue

 cookie_tuples.append((name, value, standard, rest))

 return cookie_tuples

 def _cookie_from_cookie_tuple(self, tup, request):
 # standard is dict of standard cookie-attributes, rest is dict of the
 # rest of them
 name, value, standard, rest = tup

 domain = standard.get("domain", Absent)
 path = standard.get("path", Absent)
 port = standard.get("port", Absent)
 expires = standard.get("expires", Absent)

 # set the easy defaults
 version = standard.get("version", None)
 if version is not None:
 try:
 version = int(version)
 except ValueError:
 return None # invalid version, ignore cookie
 secure = standard.get("secure", False)
 # (discard is also set if expires is Absent)
 discard = standard.get("discard", False)
 comment = standard.get("comment", None)
 comment_url = standard.get("commenturl", None)

 # set default path
 if path is not Absent and path != "":
 path_specified = True
 path = escape_path(path)
 else:
 path_specified = False
 path = request_path(request)
 i = path.rfind("/")
 if i != -1:
 if version == 0:
 # Netscape spec parts company from reality here
 path = path[:i]
 else:
 path = path[:i+1]
 if len(path) == 0: path = "/"

 # set default domain
 domain_specified = domain is not Absent
 # but first we have to remember whether it starts with a dot
 domain_initial_dot = False
 if domain_specified:
 domain_initial_dot = bool(domain.startswith("."))
 if domain is Absent:
 req_host, erhn = eff_request_host(request)
 domain = erhn
 elif not domain.startswith("."):
 domain = "."+domain

 # set default port
 port_specified = False
 if port is not Absent:
 if port is None:
 # Port attr present, but has no value: default to request port.
 # Cookie should then only be sent back on that port.
 port = request_port(request)
 else:
 port_specified = True
 port = re.sub(r"\s+", "", port)
 else:
 # No port attr present. Cookie can be sent back on any port.
 port = None

 # set default expires and discard
 if expires is Absent:
 expires = None
 discard = True
 elif expires <= self._now:
 # Expiry date in past is request to delete cookie. This can't be
 # in DefaultCookiePolicy, because can't delete cookies there.
 try:
 self.clear(domain, path, name)
 except KeyError:
 pass
 _debug("Expiring cookie, domain='%s', path='%s', name='%s'",
 domain, path, name)
 return None

 return Cookie(version,
 name, value,
 port, port_specified,
 domain, domain_specified, domain_initial_dot,
 path, path_specified,
 secure,
 expires,
 discard,
 comment,
 comment_url,
 rest)

 def _cookies_from_attrs_set(self, attrs_set, request):
 cookie_tuples = self._normalized_cookie_tuples(attrs_set)

 cookies = []
 for tup in cookie_tuples:
 cookie = self._cookie_from_cookie_tuple(tup, request)
 if cookie: cookies.append(cookie)
 return cookies

 def _process_rfc2109_cookies(self, cookies):
 rfc2109_as_ns = getattr(self._policy, 'rfc2109_as_netscape', None)
 if rfc2109_as_ns is None:
 rfc2109_as_ns = not self._policy.rfc2965
 for cookie in cookies:
 if cookie.version == 1:
 cookie.rfc2109 = True
 if rfc2109_as_ns:
 # treat 2109 cookies as Netscape cookies rather than
 # as RFC2965 cookies
 cookie.version = 0

 def make_cookies(self, response, request):
 """Return sequence of Cookie objects extracted from response object."""
 # get cookie-attributes for RFC 2965 and Netscape protocols
 headers = response.info()
 rfc2965_hdrs = headers.getheaders("Set-Cookie2")
 ns_hdrs = headers.getheaders("Set-Cookie")

 rfc2965 = self._policy.rfc2965
 netscape = self._policy.netscape

 if ((not rfc2965_hdrs and not ns_hdrs) or
 (not ns_hdrs and not rfc2965) or
 (not rfc2965_hdrs and not netscape) or
 (not netscape and not rfc2965)):
 return [] # no relevant cookie headers: quick exit

 try:
 cookies = self._cookies_from_attrs_set(
 split_header_words(rfc2965_hdrs), request)
 except Exception:
 _warn_unhandled_exception()
 cookies = []

 if ns_hdrs and netscape:
 try:
 # RFC 2109 and Netscape cookies
 ns_cookies = self._cookies_from_attrs_set(
 parse_ns_headers(ns_hdrs), request)
 except Exception:
 _warn_unhandled_exception()
 ns_cookies = []
 self._process_rfc2109_cookies(ns_cookies)

 # Look for Netscape cookies (from Set-Cookie headers) that match
 # corresponding RFC 2965 cookies (from Set-Cookie2 headers).
 # For each match, keep the RFC 2965 cookie and ignore the Netscape
 # cookie (RFC 2965 section 9.1). Actually, RFC 2109 cookies are
 # bundled in with the Netscape cookies for this purpose, which is
 # reasonable behaviour.
 if rfc2965:
 lookup = {}
 for cookie in cookies:
 lookup[(cookie.domain, cookie.path, cookie.name)] = None

 def no_matching_rfc2965(ns_cookie, lookup=lookup):
 key = ns_cookie.domain, ns_cookie.path, ns_cookie.name
 return key not in lookup
 ns_cookies = filter(no_matching_rfc2965, ns_cookies)

 if ns_cookies:
 cookies.extend(ns_cookies)

 return cookies

 def set_cookie_if_ok(self, cookie, request):
 """Set a cookie if policy says it's OK to do so."""
 self._cookies_lock.acquire()
 try:
 self._policy._now = self._now = int(time.time())

 if self._policy.set_ok(cookie, request):
 self.set_cookie(cookie)

 finally:
 self._cookies_lock.release()

 def set_cookie(self, cookie):
 """Set a cookie, without checking whether or not it should be set."""
 c = self._cookies
 self._cookies_lock.acquire()
 try:
 if cookie.domain not in c: c[cookie.domain] = {}
 c2 = c[cookie.domain]
 if cookie.path not in c2: c2[cookie.path] = {}
 c3 = c2[cookie.path]
 c3[cookie.name] = cookie
 finally:
 self._cookies_lock.release()

 def extract_cookies(self, response, request):
 """Extract cookies from response, where allowable given the request."""
 _debug("extract_cookies: %s", response.info())
 self._cookies_lock.acquire()
 try:
 self._policy._now = self._now = int(time.time())

 for cookie in self.make_cookies(response, request):
 if self._policy.set_ok(cookie, request):
 _debug(" setting cookie: %s", cookie)
 self.set_cookie(cookie)
 finally:
 self._cookies_lock.release()

 def clear(self, domain=None, path=None, name=None):
 """Clear some cookies.

 Invoking this method without arguments will clear all cookies. If
 given a single argument, only cookies belonging to that domain will be
 removed. If given two arguments, cookies belonging to the specified
 path within that domain are removed. If given three arguments, then
 the cookie with the specified name, path and domain is removed.

 Raises KeyError if no matching cookie exists.

 """
 if name is not None:
 if (domain is None) or (path is None):
 raise ValueError(
 "domain and path must be given to remove a cookie by name")
 del self._cookies[domain][path][name]
 elif path is not None:
 if domain is None:
 raise ValueError(
 "domain must be given to remove cookies by path")
 del self._cookies[domain][path]
 elif domain is not None:
 del self._cookies[domain]
 else:
 self._cookies = {}

 def clear_session_cookies(self):
 """Discard all session cookies.

 Note that the .save() method won't save session cookies anyway, unless
 you ask otherwise by passing a true ignore_discard argument.

 """
 self._cookies_lock.acquire()
 try:
 for cookie in self:
 if cookie.discard:
 self.clear(cookie.domain, cookie.path, cookie.name)
 finally:
 self._cookies_lock.release()

 def clear_expired_cookies(self):
 """Discard all expired cookies.

 You probably don't need to call this method: expired cookies are never
 sent back to the server (provided you're using DefaultCookiePolicy),
 this method is called by CookieJar itself every so often, and the
 .save() method won't save expired cookies anyway (unless you ask
 otherwise by passing a true ignore_expires argument).

 """
 self._cookies_lock.acquire()
 try:
 now = time.time()
 for cookie in self:
 if cookie.is_expired(now):
 self.clear(cookie.domain, cookie.path, cookie.name)
 finally:
 self._cookies_lock.release()

 def __iter__(self):
 return deepvalues(self._cookies)

 def __len__(self):
 """Return number of contained cookies."""
 i = 0
 for cookie in self: i = i + 1
 return i

 def __repr__(self):
 r = []
 for cookie in self: r.append(repr(cookie))
 return "<%s[%s]>" % (self.__class__, ", ".join(r))

 def __str__(self):
 r = []
 for cookie in self: r.append(str(cookie))
 return "<%s[%s]>" % (self.__class__, ", ".join(r))

derives from IOError for backwards-compatibility with Python 2.4.0
class LoadError(IOError): pass

class FileCookieJar(CookieJar):
 """CookieJar that can be loaded from and saved to a file."""

 def __init__(self, filename=None, delayload=False, policy=None):
 """
 Cookies are NOT loaded from the named file until either the .load() or
 .revert() method is called.

 """
 CookieJar.__init__(self, policy)
 if filename is not None:
 try:
 filename+""
 except:
 raise ValueError("filename must be string-like")
 self.filename = filename
 self.delayload = bool(delayload)

 def save(self, filename=None, ignore_discard=False, ignore_expires=False):
 """Save cookies to a file."""
 raise NotImplementedError()

 def load(self, filename=None, ignore_discard=False, ignore_expires=False):
 """Load cookies from a file."""
 if filename is None:
 if self.filename is not None: filename = self.filename
 else: raise ValueError(MISSING_FILENAME_TEXT)

 f = open(filename)
 try:
 self._really_load(f, filename, ignore_discard, ignore_expires)
 finally:
 f.close()

 def revert(self, filename=None,
 ignore_discard=False, ignore_expires=False):
 """Clear all cookies and reload cookies from a saved file.

 Raises LoadError (or IOError) if reversion is not successful; the
 object's state will not be altered if this happens.

 """
 if filename is None:
 if self.filename is not None: filename = self.filename
 else: raise ValueError(MISSING_FILENAME_TEXT)

 self._cookies_lock.acquire()
 try:

 old_state = copy.deepcopy(self._cookies)
 self._cookies = {}
 try:
 self.load(filename, ignore_discard, ignore_expires)
 except (LoadError, IOError):
 self._cookies = old_state
 raise

 finally:
 self._cookies_lock.release()

from _LWPCookieJar import LWPCookieJar, lwp_cookie_str
from _MozillaCookieJar import MozillaCookieJar

 © Copyright 2016. A Kenneth Reitz Project.

_modules/_abcoll.html

 Navigation

 		
 index

 		
 modules |

 		Requests 2.10.0 documentation »

 		Module code »

 Source code for _abcoll

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

DON'T USE THIS MODULE DIRECTLY! The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues. Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
 "Sized", "Container", "Callable",
 "Set", "MutableSet",
 "Mapping", "MutableMapping",
 "MappingView", "KeysView", "ItemsView", "ValuesView",
 "Sequence", "MutableSequence",
]

ONE-TRICK PONIES

def _hasattr(C, attr):
 try:
 return any(attr in B.__dict__ for B in C.__mro__)
 except AttributeError:
 # Old-style class
 return hasattr(C, attr)

class Hashable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __hash__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Hashable:
 try:
 for B in C.__mro__:
 if "__hash__" in B.__dict__:
 if B.__dict__["__hash__"]:
 return True
 break
 except AttributeError:
 # Old-style class
 if getattr(C, "__hash__", None):
 return True
 return NotImplemented

class Iterable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __iter__(self):
 while False:
 yield None

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterable:
 if _hasattr(C, "__iter__"):
 return True
 return NotImplemented

Iterable.register(str)

class Iterator(Iterable):

 @abstractmethod
 def next(self):
 'Return the next item from the iterator. When exhausted, raise StopIteration'
 raise StopIteration

 def __iter__(self):
 return self

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterator:
 if _hasattr(C, "next") and _hasattr(C, "__iter__"):
 return True
 return NotImplemented

class Sized:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __len__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Sized:
 if _hasattr(C, "__len__"):
 return True
 return NotImplemented

class Container:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __contains__(self, x):
 return False

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Container:
 if _hasattr(C, "__contains__"):
 return True
 return NotImplemented

class Callable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __call__(self, *args, **kwds):
 return False

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Callable:
 if _hasattr(C, "__call__"):
 return True
 return NotImplemented

SETS

class Set(Sized, Iterable, Container):
 """A set is a finite, iterable container.

 This class provides concrete generic implementations of all
 methods except for __contains__, __iter__ and __len__.

 To override the comparisons (presumably for speed, as the
 semantics are fixed), all you have to do is redefine __le__ and
 then the other operations will automatically follow suit.
 """

 def __le__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 if len(self) > len(other):
 return False
 for elem in self:
 if elem not in other:
 return False
 return True

 def __lt__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) < len(other) and self.__le__(other)

 def __gt__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return other.__lt__(self)

 def __ge__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return other.__le__(self)

 def __eq__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) == len(other) and self.__le__(other)

 def __ne__(self, other):
 return not (self == other)

 @classmethod
 def _from_iterable(cls, it):
 '''Construct an instance of the class from any iterable input.

 Must override this method if the class constructor signature
 does not accept an iterable for an input.
 '''
 return cls(it)

 def __and__(self, other):
 if not isinstance(other, Iterable):
 return NotImplemented
 return self._from_iterable(value for value in other if value in self)

 def isdisjoint(self, other):
 'Return True if two sets have a null intersection.'
 for value in other:
 if value in self:
 return False
 return True

 def __or__(self, other):
 if not isinstance(other, Iterable):
 return NotImplemented
 chain = (e for s in (self, other) for e in s)
 return self._from_iterable(chain)

 def __sub__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return self._from_iterable(value for value in self
 if value not in other)

 def __xor__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return (self - other) | (other - self)

 # Sets are not hashable by default, but subclasses can change this
 __hash__ = None

 def _hash(self):
 """Compute the hash value of a set.

 Note that we don't define __hash__: not all sets are hashable.
 But if you define a hashable set type, its __hash__ should
 call this function.

 This must be compatible __eq__.

 All sets ought to compare equal if they contain the same
 elements, regardless of how they are implemented, and
 regardless of the order of the elements; so there's not much
 freedom for __eq__ or __hash__. We match the algorithm used
 by the built-in frozenset type.
 """
 MAX = sys.maxint
 MASK = 2 * MAX + 1
 n = len(self)
 h = 1927868237 * (n + 1)
 h &= MASK
 for x in self:
 hx = hash(x)
 h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167
 h &= MASK
 h = h * 69069 + 907133923
 h &= MASK
 if h > MAX:
 h -= MASK + 1
 if h == -1:
 h = 590923713
 return h

Set.register(frozenset)

class MutableSet(Set):
 """A mutable set is a finite, iterable container.

 This class provides concrete generic implementations of all
 methods except for __contains__, __iter__, __len__,
 add(), and discard().

 To override the comparisons (presumably for speed, as the
 semantics are fixed), all you have to do is redefine __le__ and
 then the other operations will automatically follow suit.
 """

 @abstractmethod
 def add(self, value):
 """Add an element."""
 raise NotImplementedError

 @abstractmethod
 def discard(self, value):
 """Remove an element. Do not raise an exception if absent."""
 raise NotImplementedError

 def remove(self, value):
 """Remove an element. If not a member, raise a KeyError."""
 if value not in self:
 raise KeyError(value)
 self.discard(value)

 def pop(self):
 """Return the popped value. Raise KeyError if empty."""
 it = iter(self)
 try:
 value = next(it)
 except StopIteration:
 raise KeyError
 self.discard(value)
 return value

 def clear(self):
 """This is slow (creates N new iterators!) but effective."""
 try:
 while True:
 self.pop()
 except KeyError:
 pass

 def __ior__(self, it):
 for value in it:
 self.add(value)
 return self

 def __iand__(self, it):
 for value in (self - it):
 self.discard(value)
 return self

 def __ixor__(self, it):
 if it is self:
 self.clear()
 else:
 if not isinstance(it, Set):
 it = self._from_iterable(it)
 for value in it:
 if value in self:
 self.discard(value)
 else:
 self.add(value)
 return self

 def __isub__(self, it):
 if it is self:
 self.clear()
 else:
 for value in it:
 self.discard(value)
 return self

MutableSet.register(set)

MAPPINGS

class Mapping(Sized, Iterable, Container):

 """A Mapping is a generic container for associating key/value
 pairs.

 This class provides concrete generic implementations of all
 methods except for __getitem__, __iter__, and __len__.

 """

 @abstractmethod
 def __getitem__(self, key):
 raise KeyError

 def get(self, key, default=None):
 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.'
 try:
 return self[key]
 except KeyError:
 return default

 def __contains__(self, key):
 try:
 self[key]
 except KeyError:
 return False
 else:
 return True

 def iterkeys(self):
 'D.iterkeys() -> an iterator over the keys of D'
 return iter(self)

 def itervalues(self):
 'D.itervalues() -> an iterator over the values of D'
 for key in self:
 yield self[key]

 def iteritems(self):
 'D.iteritems() -> an iterator over the (key, value) items of D'
 for key in self:
 yield (key, self[key])

 def keys(self):
 "D.keys() -> list of D's keys"
 return list(self)

 def items(self):
 "D.items() -> list of D's (key, value) pairs, as 2-tuples"
 return [(key, self[key]) for key in self]

 def values(self):
 "D.values() -> list of D's values"
 return [self[key] for key in self]

 # Mappings are not hashable by default, but subclasses can change this
 __hash__ = None

 def __eq__(self, other):
 if not isinstance(other, Mapping):
 return NotImplemented
 return dict(self.items()) == dict(other.items())

 def __ne__(self, other):
 return not (self == other)

class MappingView(Sized):

 def __init__(self, mapping):
 self._mapping = mapping

 def __len__(self):
 return len(self._mapping)

 def __repr__(self):
 return '{0.__class__.__name__}({0._mapping!r})'.format(self)

class KeysView(MappingView, Set):

 @classmethod
 def _from_iterable(self, it):
 return set(it)

 def __contains__(self, key):
 return key in self._mapping

 def __iter__(self):
 for key in self._mapping:
 yield key

class ItemsView(MappingView, Set):

 @classmethod
 def _from_iterable(self, it):
 return set(it)

 def __contains__(self, item):
 key, value = item
 try:
 v = self._mapping[key]
 except KeyError:
 return False
 else:
 return v == value

 def __iter__(self):
 for key in self._mapping:
 yield (key, self._mapping[key])

class ValuesView(MappingView):

 def __contains__(self, value):
 for key in self._mapping:
 if value == self._mapping[key]:
 return True
 return False

 def __iter__(self):
 for key in self._mapping:
 yield self._mapping[key]

class MutableMapping(Mapping):

 """A MutableMapping is a generic container for associating
 key/value pairs.

 This class provides concrete generic implementations of all
 methods except for __getitem__, __setitem__, __delitem__,
 __iter__, and __len__.

 """

 @abstractmethod
 def __setitem__(self, key, value):
 raise KeyError

 @abstractmethod
 def __delitem__(self, key):
 raise KeyError

 __marker = object()

 def pop(self, key, default=__marker):
 '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
 If key is not found, d is returned if given, otherwise KeyError is raised.
 '''
 try:
 value = self[key]
 except KeyError:
 if default is self.__marker:
 raise
 return default
 else:
 del self[key]
 return value

 def popitem(self):
 '''D.popitem() -> (k, v), remove and return some (key, value) pair
 as a 2-tuple; but raise KeyError if D is empty.
 '''
 try:
 key = next(iter(self))
 except StopIteration:
 raise KeyError
 value = self[key]
 del self[key]
 return key, value

 def clear(self):
 'D.clear() -> None. Remove all items from D.'
 try:
 while True:
 self.popitem()
 except KeyError:
 pass

 def update(*args, **kwds):
 ''' D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
 If E present and has a .keys() method, does: for k in E: D[k] = E[k]
 If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
 In either case, this is followed by: for k, v in F.items(): D[k] = v
 '''
 if len(args) > 2:
 raise TypeError("update() takes at most 2 positional "
 "arguments ({} given)".format(len(args)))
 elif not args:
 raise TypeError("update() takes at least 1 argument (0 given)")
 self = args[0]
 other = args[1] if len(args) >= 2 else ()

 if isinstance(other, Mapping):
 for key in other:
 self[key] = other[key]
 elif hasattr(other, "keys"):
 for key in other.keys():
 self[key] = other[key]
 else:
 for key, value in other:
 self[key] = value
 for key, value in kwds.items():
 self[key] = value

 def setdefault(self, key, default=None):
 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
 try:
 return self[key]
 except KeyError:
 self[key] = default
 return default

MutableMapping.register(dict)

SEQUENCES

class Sequence(Sized, Iterable, Container):
 """All the operations on a read-only sequence.

 Concrete subclasses must override __new__ or __init__,
 __getitem__, and __len__.
 """

 @abstractmethod
 def __getitem__(self, index):
 raise IndexError

 def __iter__(self):
 i = 0
 try:
 while True:
 v = self[i]
 yield v
 i += 1
 except IndexError:
 return

 def __contains__(self, value):
 for v in self:
 if v == value:
 return True
 return False

 def __reversed__(self):
 for i in reversed(range(len(self))):
 yield self[i]

 def index(self, value):
 '''S.index(value) -> integer -- return first index of value.
 Raises ValueError if the value is not present.
 '''
 for i, v in enumerate(self):
 if v == value:
 return i
 raise ValueError

 def count(self, value):
 'S.count(value) -> integer -- return number of occurrences of value'
 return sum(1 for v in self if v == value)

Sequence.register(tuple)
Sequence.register(basestring)
Sequence.register(buffer)
Sequence.register(xrange)

class MutableSequence(Sequence):

 """All the operations on a read-only sequence.

 Concrete subclasses must provide __new__ or __init__,
 __getitem__, __setitem__, __delitem__, __len__, and insert().

 """

 @abstractmethod
 def __setitem__(self, index, value):
 raise IndexError

 @abstractmethod
 def __delitem__(self, index):
 raise IndexError

 @abstractmethod
 def insert(self, index, value):
 'S.insert(index, object) -- insert object before index'
 raise IndexError

 def append(self, value):
 'S.append(object) -- append object to the end of the sequence'
 self.insert(len(self), value)

 def reverse(self):
 'S.reverse() -- reverse *IN PLACE*'
 n = len(self)
 for i in range(n//2):
 self[i], self[n-i-1] = self[n-i-1], self[i]

 def extend(self, values):
 'S.extend(iterable) -- extend sequence by appending elements from the iterable'
 for v in values:
 self.append(v)

 def pop(self, index=-1):
 '''S.pop([index]) -> item -- remove and return item at index (default last).
 Raise IndexError if list is empty or index is out of range.
 '''
 v = self[index]
 del self[index]
 return v

 def remove(self, value):
 '''S.remove(value) -- remove first occurrence of value.
 Raise ValueError if the value is not present.
 '''
 del self[self.index(value)]

 def __iadd__(self, values):
 self.extend(values)
 return self

MutableSequence.register(list)

 © Copyright 2016. A Kenneth Reitz Project.

